OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15621–15626

A compact broadband microfiber Bragg grating

Ming Ding, Michalis N. Zervas, and Gilberto Brambilla  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15621-15626 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (3831 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A sub-10µm long microfiber Bragg grating was nanostructured into a ~1µm-diameter optical microfiber by focused ion beam (FIB) technology. The periodic structures were carved into the microfiber and the large refractive index contrast between glass and air allowed for the formation of strong gratings with only 20 periods. 3D simulation showed a good agreement with the experiment demonstration. This compact device can find applications in a variety of fields ranging from temperature and refractive index sensing to optical communications.

© 2011 OSA

OCIS Codes
(230.1150) Optical devices : All-optical devices
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.4005) Fiber optics and optical communications : Microstructured fibers
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 15, 2011
Revised Manuscript: July 15, 2011
Manuscript Accepted: July 15, 2011
Published: July 29, 2011

Ming Ding, Michalis N. Zervas, and Gilberto Brambilla, "A compact broadband microfiber Bragg grating," Opt. Express 19, 15621-15626 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978). [CrossRef]
  2. B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Opt. Lett. 3(2), 66–68 (1978). [CrossRef] [PubMed]
  3. R. Kashyap, Fiber Bragg Grating (Elsevier Academic, 2010).
  4. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989). [CrossRef] [PubMed]
  5. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg grating fabricated inmonomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993). [CrossRef]
  6. G. Pakulski, R. Moore, C. Maritan, F. Shepherd, M. Fallahi, I. Templeton, and G. Champion, “Fused silica masks for printing uniform and phase adjusted gratings for distributed feedback lasers,” Appl. Phys. Lett. 62(3), 222–224 (1993). [CrossRef]
  7. M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fiber gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995). [CrossRef]
  8. D. C. Johnson, F. Bilodeau, B. Malo, K. O. Hill, P. G. J. Wigley, and G. I. Stegeman, “Long-length, long-period rocking filters fabricated from conventional monomode telecommunications optical fiber,” Opt. Lett. 17(22), 1635–1637 (1992). [CrossRef] [PubMed]
  9. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask,” Opt. Lett. 29(18), 2127–2129 (2004). [CrossRef] [PubMed]
  10. A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Opt. Lett. 28(22), 2171–2173 (2003). [CrossRef] [PubMed]
  11. H. Xuan, W. Jin, and S. Liu, “Long-period gratings in wavelength-scale microfibers,” Opt. Lett. 35(1), 85–87 (2010). [CrossRef] [PubMed]
  12. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. I. Adiabaticity criteria,” IEE Proc.-J.:Optoelectron. 138, 343–354 (1991). [CrossRef]
  13. F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” J. Lightwave Technol. 6(10), 1476–1482 (1988). [CrossRef]
  14. G. Brambilla, E. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41(7), 400–401 (2005). [CrossRef]
  15. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992). [CrossRef]
  16. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004). [CrossRef] [PubMed]
  17. Y. Jung, G. Brambilla, and D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009). [CrossRef] [PubMed]
  18. R. Feced and M. N. Zervas, “Effects of random phase and amplitude errors in optical fiber Bragg gratings,” J. Lightwave Technol. 18(1), 90–101 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited