OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15627–15640

Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering

Joseph D. Miller, Sukesh Roy, Mikhail N. Slipchenko, James R. Gord, and Terrence R. Meyer  »View Author Affiliations


Optics Express, Vol. 19, Issue 16, pp. 15627-15640 (2011)
http://dx.doi.org/10.1364/OE.19.015627


View Full Text Article

Enhanced HTML    Acrobat PDF (1355 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-repetition-rate, single-laser-shot measurements are important for the investigation of unsteady flows where temperature and species concentrations can vary significantly. Here, we demonstrate single-shot, pure-rotational, hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) thermometry based on a kHz-rate fs laser source. Interferences that can affect nanosecond (ns) and ps CARS, such as nonresonant background and collisional dephasing, are eliminated by selecting an appropriate time delay between the 100-fs pump/Stokes pulses and the pulse-shaped 8.4-ps probe. A time- and frequency-domain theoretical model is introduced to account for rotational-level dependent collisional dephasing and indicates that the optimal probe-pulse time delay is 13.5 ps to 30 ps. This time delay allows for uncorrected best-fit N2-RCARS temperature measurements with ~1% accuracy. Hence, the hybrid fs/ps RCARS approach can be performed with kHz-rate laser sources while avoiding corrections that can be difficult to predict in unsteady flows.

© 2011 OSA

OCIS Codes
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5390) Ultrafast optics : Picosecond phenomena

ToC Category:
Sensors

History
Original Manuscript: June 13, 2011
Revised Manuscript: July 10, 2011
Manuscript Accepted: July 10, 2011
Published: July 29, 2011

Citation
Joseph D. Miller, Sukesh Roy, Mikhail N. Slipchenko, James R. Gord, and Terrence R. Meyer, "Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering," Opt. Express 19, 15627-15640 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-15627


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36(2), 280–306 (2010). [CrossRef]
  2. A. C. Eckbreth, Laser diagnostics for combustion temperature and species (Gordon and Breach Publishers, 1996).
  3. J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energ. Combust. 37(5), 525–564 (2011). [CrossRef]
  4. S. A. Tedder, J. L. Wheeler, A. D. Cutler, and P. M. Danehy, “Width-increased dual-pump enhanced coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 49(8), 1305–1313 (2010). [CrossRef] [PubMed]
  5. S. P. Kearney, R. P. Lucht, and A. M. Jacobi, “Temperature measurements in convective heat transfer flows using dual-broadband, pure-rotational coherent anti-Stokes Raman spectroscopy (CARS),” Exp. Therm. Fluid Sci. 19(1), 13–26 (1999). [CrossRef]
  6. P. E. Bengtsson, L. Martinsson, M. Aldén, B. Johansson, B. Lassesson, K. Marforio, and G. Lundholm, “Dual-broadband rotational CARS measurements in an IC engine,” Proc. Combust. Inst. 25, 1735–1742 (1994).
  7. R. J. M. Westerhof, D. W. F. Brilman, W. P. M. van Swaaij, and S. R. A. Kersten, “Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units,” Ind. Eng. Chem. Res. 49(3), 1160–1168 (2010). [CrossRef]
  8. W. Chaiwat, I. Hasegawa, and K. Mae, “Examination of the low-temperature region in a downdraft gasifier for the pyrolysis product analysis of biomass air gasification,” Ind. Eng. Chem. Res. 48(19), 8934–8943 (2009). [CrossRef]
  9. J. A. Hoolroyd, “Low temperature oxidation catalyst development and applications,” American Filtration and Separation Society Annual Conference, Valley Forge, PA, 19–22 May 2008.
  10. S. Roy, T. R. Meyer, R. P. Lucht, M. Afzelius, P. E. Bengtsson, and J. R. Gord, “Dual-pump dual-broadband coherent anti-Stokes Raman scattering in reacting flows,” Opt. Lett. 29(16), 1843–1845 (2004). [CrossRef] [PubMed]
  11. A. C. Eckbreth and R. J. Hall, “Cars concentration sensitivity with and without non-resonant background suppression,” Combust. Sci. Technol. 25(5), 175–192 (1981). [CrossRef]
  12. M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modeling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75(6-7), 771–778 (2002). [CrossRef]
  13. S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30(23), 3222–3224 (2005). [CrossRef] [PubMed]
  14. S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005). [CrossRef]
  15. T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61(11), 1135–1140 (2007). [CrossRef] [PubMed]
  16. W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2 Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97(8), 081112 (2010). [CrossRef]
  17. T. Seeger, J. Kiefer, Y. Gao, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Suppression of Raman-resonant interferences in rotational coherent anti-Stokes Raman spectroscopy using time-delayed picosecond probe pulses,” Opt. Lett. 35(12), 2040–2042 (2010). [CrossRef] [PubMed]
  18. T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N(2) thermometry,” Opt. Lett. 34(23), 3755–3757 (2009). [CrossRef] [PubMed]
  19. C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33(1), 831–838 (2011). [CrossRef]
  20. P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344(3-4), 407–412 (2001). [CrossRef]
  21. H. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999). [CrossRef]
  22. G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002). [CrossRef]
  23. R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006). [CrossRef]
  24. J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 663–687 (2008). [CrossRef] [PubMed]
  25. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009). [CrossRef] [PubMed]
  26. S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett. 94(14), 144101 (2009). [CrossRef]
  27. Y. Coello, V. Lozovoy, T. Gunaratne, B. Xu, I. Borukhovich, C. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25(6), A140–A150 (2008). [CrossRef]
  28. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010). [CrossRef] [PubMed]
  29. J. D. Miller, M. N. Slipchenko, and T. R. Meyer, “Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature,” Opt. Express 19(14), 13326–13333 (2011). [CrossRef] [PubMed]
  30. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).
  31. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 44502 (2006). [CrossRef] [PubMed]
  32. M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113(1), 135–140 (2009). [CrossRef] [PubMed]
  33. R. E. Palmer, “The CARSFT computer code for calculating coherent anti-Stokes Raman spectra: user and programmer information,” Sandia Rep. SAND–89–8206 (Sandia National Laboratories, Livermore, CA, 1989).
  34. F. Vestin, K. Nilsson, and P. E. Bengtsson, “Validation of a rotational coherent anti-Stokes Raman spectroscopy model for carbon dioxide using high-resolution detection in the temperature range 294-1143 K,” Appl. Opt. 47(11), 1893–1901 (2008). [CrossRef] [PubMed]
  35. A. Bohlin, P.-E. Bengtsson, and M. Marrocco, “On the sensitivity of rotational CARS N2 thermometry to the Herman-Wallis factor,” J. Raman Spectrosc. , Available Online Feb. 11, 2011. [CrossRef]
  36. K. P. Huber and G. Herzberg, Molecular spectra and molecular structure - IV. Constants of diatomic molecules (Van Nostrand Reinhold, 1979).
  37. L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high-temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3(9), 1164–1169 (1986). [CrossRef]
  38. L. Martinsson, P. E. Bengtsson, M. Alden, S. Kroll, and J. Bonamy, “A test of different rotational Raman linewidth models: Accuracy of rotational coherent anti-Stokes-Raman ccattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993). [CrossRef]
  39. R. L. Farrow and L. A. Rahn, “Optical Stark splitting of rotational Raman transitions,” Phys. Rev. Lett. 48(6), 395–398 (1982). [CrossRef]
  40. A. C. Eckbreth, “BOXCARS: Crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32(7), 421–423 (1978). [CrossRef]
  41. G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, “Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering,” J. Chem. Phys. 118(18), 8223–8233 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited