OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 15652–15668

Optimization of end-pumped, actively Q-switched quasi-III-level lasers

Jan K. Jabczynski, Lukasz Gorajek, Jacek Kwiatkowski, Mateusz Kaskow, and Waldemar Zendzian  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 15652-15668 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The new model of end-pumped quasi-III-level laser considering transient pumping processes, ground-state-depletion and up-conversion effects was developed. The model consists of two parts: pumping stage and Q-switched part, which can be separated in a case of active Q-switching regime. For pumping stage the semi-analytical model was developed, enabling the calculations for final occupation of upper laser level for given pump power and duration, spatial profile of pump beam, length and dopant level of gain medium. For quasi-stationary inversion, the optimization procedure of Q-switching regime based on Lagrange multiplier technique was developed. The new approach for optimization of CW regime of quasi-three-level lasers was developed to optimize the Q-switched lasers operating with high repetition rates. Both methods of optimizations enable calculation of optimal absorbance of gain medium and output losses for given pump rate.

© 2011 OSA

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5560) Lasers and laser optics : Pumping
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 29, 2011
Revised Manuscript: June 14, 2011
Manuscript Accepted: June 23, 2011
Published: August 1, 2011

Jan K. Jabczynski, Lukasz Gorajek, Jacek Kwiatkowski, Mateusz Kaskow, and Waldemar Zendzian, "Optimization of end-pumped, actively Q-switched quasi-III-level lasers," Opt. Express 19, 15652-15668 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Svelto, Principles of Lasers (Plenum Press, 1998).
  2. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5(7), 1412–1423 (1988). [CrossRef]
  3. T. Y. Fan, “Optimizing the efficiency and stored energy in quasi-three-level lasers,” IEEE J. Quantum Electron. 28(12), 2692–2697 (1992). [CrossRef]
  4. C. D. Nabors, “Q-switched operation of quasi-three-level lasers,” IEEE J. Quantum Electron. 30(12), 2896–2901(1994). [CrossRef]
  5. R. J. Beach, “CW Theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123(1-3), 385–393 (1996). [CrossRef]
  6. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW thin disk laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000). [CrossRef]
  7. G. L. Bourdet, “Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers,” Appl. Opt. 39(6), 966–971 (2000). [CrossRef] [PubMed]
  8. G. L. Bourdet, “New evaluation of ytterbium-doped materials for CW laser applications,” Opt. Commun. 198(4-6), 411–417 (2001). [CrossRef]
  9. C. Lim and Y. Izawa, “Modeling of end-pumped CW quasi-three-level lasers,” IEEE J. Quantum Electron. 38(3), 306–311 (2002). [CrossRef]
  10. T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt. 36(9), 1867–1874 (1997). [CrossRef] [PubMed]
  11. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008). [CrossRef]
  12. I. Kudryashov, D. Garbuzov, and M. Dubinskii, “Latest developments in resonantly diode-pumped Er:YAG lasers,” in Laser Source Technology for Defence and Security III, Proc. SPIE 6552, 65520K (2007). [CrossRef]
  13. B. M. Walsh, “Review of Tm and Ho Materials; Spectroscopy and Lasers,” Laser Phys. 19(4), 855–866 (2009). [CrossRef]
  14. E. P. Chicklis, J. R. Mosto, M. L. Lemons, and P. A. Budni, “High-Power/High-Brightness Diode-Pumped 1.9-μm Thulium and resonantly Pumped 2.1-μm Holmium Lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000). [CrossRef]
  15. J. Kwiatkowski, J. K. Jabczynski, Ł. Gorajek, W. Zendzian, H. Jelínková, J. Sulc, M. Nemec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009). [CrossRef]
  16. N. P. Barnes, K. E. Murray, and M. G. Jani, “Flash-lamp-pumped Ho:Tm:Cr:YAG and Ho:Tm:Er:YLF lasers: modeling of a single, long pulse length comparison,” Appl. Opt. 36(15), 3363–3374 (1997). [CrossRef] [PubMed]
  17. E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Quantum Electron. 33(9), 1592–1600 (1997). [CrossRef]
  18. P. Peterson, M. P. Sharma, and A. Gavrielides, “Extraction efficiency and thermal lensing in Tm:YAG lasers,” Opt. Quantum Electron. 28(6), 695–707 (1996). [CrossRef]
  19. P. Cemy and D. Burns, “Modeling and experimental investigation of a diode-pumped Tm:YAlO3 laser with a- and b-cut orientation,” IEEE J. Sel. Top. Quantum Electron. 11(3), 674–681 (2005). [CrossRef]
  20. G. L. Bourdet and G. Lescroart, “Theoretical modeling and design of a Tm:YVO4 microchip lasers,” Opt. Commun. 149(4-6), 404–414 (1998). [CrossRef]
  21. S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006). [CrossRef]
  22. M. Schellhorn, M. Eichhorn, C. Kieleck, and A. Hirth, “High repetition rate mid-infrared laser source,” C. R. Phys. 8(10), 1151–1161 (2007). [CrossRef]
  23. J. K. Jabczynski, W. Zendzian, J. Kwiatkowski, H. Jelínková, J. Šulc, and M. Němec, “Actively Q-switched diode pumped thulium laser,” Laser Phys. Lett. 4(12), 863–867 (2007). [CrossRef]
  24. N. G. Zakharov, O. L. Antipov, A. P. Savikin, V. V. Sharkov, O. N. Eremeikin, Y. N. Frolov, G. M. Mishchenko, and S. D. Velikanov, “Efficient emission at 1908 nm in a diode-pumped Tm:YLF laser,” Quantum Electron. 39(5), 410–414 (2009). [CrossRef]
  25. J. K. Jabczynski, L. Gorajek, W. Zendzian, J. Kwiatkowski, H. Jelinkova, J. Sulc, and M. Nemec, “Actively Q-switched thulium lasers,” in Advances in Solid State Lasers: Development and Applications IN-TECH, Vienna, (2010).
  26. S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser & Photon. Rev. 3(5), 466–482 (2009). [CrossRef]
  27. G. L. Bourdet and G. Lescroart, “Theoretical modeling and design of a Tm:Ho:YLiF4 microchip laser,” Appl. Opt. 38(15), 3275–3281 (1999). [CrossRef] [PubMed]
  28. G. L. Bourdet, “Gain and absorption saturation coupling in end pumped Tm:YVO4 and Tm:Ho:YLF amplifiers,” Opt. Commun. 173(1-6), 333–340 (2000). [CrossRef]
  29. J. M. Sousa, J. R. Salcedo, and V. V. Kuzmin, “Simulation of laser dynamics and active Q-switching in Tm,Ho:YAG and Tm:YAG lasers,” Appl. Phys. B 64(1), 25–36 (1996). [CrossRef]
  30. X. Zhang, Y. Ju, and Y. Wang, “Theoretical and experimental investigation of actively Q-switched Tm,Ho:YLF lasers,” Opt. Express 14(17), 7745–7750 (2006). [CrossRef] [PubMed]
  31. O. A. Louchev, Y. Urata, and S. Wada, “Numerical simulation and optimization of Q-switched 2 mum Tm,Ho:YLF laser,” Opt. Express 15(7), 3940–3947 (2007). [CrossRef] [PubMed]
  32. G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for up conversion and ground-state depletion,” IEEE J. Quantum Electron. 32(9), 1645–1656 (1996). [CrossRef]
  33. L. B. Shaw, R. S. F. Chang, and N. Djeu, “Measurement of up-conversion energy-transfer probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12,” Phys. Rev. B 50, 6009–6019 (1996).
  34. Y. F. Chen, Y. P. Lan, and S. C. Wang, “Modeling of diode-end-pumped Q-switched solid-state lasers: influence of energy-transfer upconversion,” J. Opt. Soc. Am. B 19(7), 1558–1563 (2002). [CrossRef]
  35. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25(2), 214–220 (1989). [CrossRef]
  36. T. Y. Fan, “Aperture guiding in quasi-three-level lasers,” Opt. Lett. 19(8), 554–556 (1994). [CrossRef] [PubMed]
  37. I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Muehling, Taschenbuch der Mathematik, (Verlag Harri Deutsch 2001)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited