OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 15720–15731

High rejection bandpass optical filters based on sub-wavelength metal patch arrays

J. Le Perchec, R. Espiau de Lamaestre, M. Brun, N. Rochat, O. Gravrand, G. Badano, J. Hazart, and S. Nicoletti  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 15720-15731 (2011)
http://dx.doi.org/10.1364/OE.19.015720


View Full Text Article

Enhanced HTML    Acrobat PDF (1710 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the study of a resonant bandpass filter made of a very thin subwavelength metal patch array coupled to a high index dielectric waveguide. The spectral properties of those filters can easily be tuned by playing on the lateral dimensions of the grating. They exhibit high and narrow transmission peaks together with very good rejection of light out of the pass-band and low angular dependance. An experimental demonstration using standard large scale silicon microelectronics processes is presented in the mid infrared spectral range. This concept of filters can easily be scaled throughout the optical spectrum, and can be integrated within focal plane arrays of various imaging technologies, down to visible wavelengths.

© 2011 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(110.3080) Imaging systems : Infrared imaging
(120.7000) Instrumentation, measurement, and metrology : Transmission
(240.6690) Optics at surfaces : Surface waves
(310.1860) Thin films : Deposition and fabrication
(310.6860) Thin films : Thin films, optical properties
(350.2460) Other areas of optics : Filters, interference
(310.4165) Thin films : Multilayer design
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

History
Original Manuscript: April 4, 2011
Revised Manuscript: May 12, 2011
Manuscript Accepted: May 16, 2011
Published: August 2, 2011

Citation
J. Le Perchec, R. Espiau de Lamaestre, M. Brun, N. Rochat, O. Gravrand, G. Badano, J. Hazart, and S. Nicoletti, "High rejection bandpass optical filters based on sub-wavelength metal patch arrays," Opt. Express 19, 15720-15731 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-15720


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Shen, X. Sun, Y. Zhang, Z. Luo, X. Liu, and P. Gu, “Narrow band filters in both transmission and reflection with metal/dielectric thin films,” Opt. Comm. 282, 242–246 (2009). [CrossRef]
  2. J. L. Zhang, W. D. Shen, P. Gu, Y. G. Zhang, H. T. Jiang, and X. Liu, “Omnidirectional narrow bandpass filter based on metal-dielectric thin films,” Appl. Opt. 47, 6285–6290 (2008). [CrossRef] [PubMed]
  3. Z. Sun and Qi Lin, “Study of a Fabry–Perot-like microcavity with sandwiched metallic gratings for tunable filter arrays,” IEEE Photon. Technol. Lett. 20, 1157–1159 (2008). [CrossRef]
  4. B. A. Munk, Frequency Selective Surfaces (Wiley-Interscience, 2000). [CrossRef]
  5. D. H. Dawes, R. C. McPhedran, and L. B. Whitbourn, “Thin capacitive meshes on a dielectric boundary: theory and experiment,” Appl. Opt. 28, 3498–3510 (1989). [CrossRef] [PubMed]
  6. J. J. Bock, M. Kawada, H. Matsuhara, P. L. Richards, and A. E. Lange, “Silicon-gap Fabry–Perot filter for far-infrared wavelengths,” Appl. Opt. 34, 3651–3657 (1995). [CrossRef] [PubMed]
  7. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967). [CrossRef]
  8. R. McPhedran and D. Maystre, “On the theory and solar application of inductive grids,” Appl. Phys. 14, 1–20 (1977). [CrossRef]
  9. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998). [CrossRef]
  10. K. Jefimovs, T. Vallius, V. Kettunen, M. Kuittinen, J. Turunen, and P. Vahimaa, “Inductive grid filters for rejection of infrared radiation,” J. Mod. Opt. 51, 1651–1661 (2004).
  11. S. T. Chase and R. D. Joseph, “Resonant array bandpass filters for the far infrared,” Appl. Opt. 22, 1775–1779 (1983). [CrossRef] [PubMed]
  12. C.-Y. Chen, M.-W. Tsai, T.-H. Chuang, Y.-T. Chang, and S.-C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett. 91, 063108 (2007). [CrossRef]
  13. H. Lochbihler and R. Depine, “Highly conducting wire gratings in the resonance region,” Appl. Opt. 32, 3459–3465 (1993). [CrossRef] [PubMed]
  14. A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403 (2002). [CrossRef]
  15. D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15, 1415–1427 (2007). [CrossRef] [PubMed]
  16. W.-D. Li and S. Y. Chou, “Solar-blind deep-UV band-pass filter (250–350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography,” Opt. Express 18, 931–937 (2010). [CrossRef] [PubMed]
  17. Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18, 14056–14062 (2010). [CrossRef] [PubMed]
  18. H. A. Smith, M. Rebbert, and O. Sternberg, “Designer infrared filters using stacked metal lattices,” Appl. Phys. Lett. 82, 3605–3607 (2003). [CrossRef]
  19. H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett. 31, 516–518 (2006). [CrossRef] [PubMed]
  20. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010). [CrossRef] [PubMed]
  21. G. Vincent, S. Collin, N. Bardou, J.-L. Pelouard, and R. Haïda, “Large-area dielectric and metallic freestanding gratings for midinfrared optical filtering applications,” J. Vac. Sci. Technol. B 26, 1852–1855 (2008). [CrossRef]
  22. R. Luebbers and B. Munk, “Some effects of dielectric loading on periodic slot arrays,” IEEE Trans. Antennas Propag. 26, 536–542(1978). [CrossRef]
  23. V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of sub-wavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71, 235117 (2005). [CrossRef]
  24. S. A. Darmanyan and A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study,” Phys. Rev. B 67, 035424 (2003). [CrossRef]
  25. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).
  26. R. Rodríguez-Berral, F. Mesa, and F. Medina, “Circuit model for a periodic array of slits sandwiched between two dielectric slabs,” Appl. Phys. Lett. 96, 161104 (2010). [CrossRef]
  27. A. Barbara, J. Le Perchec, P. Quémerais, T. López-Ríos, and N. Rochat, “Experimental evidence of efficient cavity modes excitation in metallic gratings by attenuated total reflection,” J. Appl. Phys. 98, 033705 (2005). [CrossRef]
  28. G. J. Hawkins, R. E. Sherwood, B. M. Barrett, M. Wallace, H. J. B. Orr, K. Matthews, and S. Bisht, “High-performance infrared narrow-bandpass filters for the Indian National Satellite System meteorological instrument (INSAT-3D),” Appl. Opt. 47, 2346–2356 (2008). [CrossRef] [PubMed]
  29. S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26, 584–586 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited