OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 15732–15738

Emission wavelength tuning by mechanical stressing of GaAs/Ge/Si microbeams

Yu Horie, Laurent Décosterd, Ryota Suzuki, Yasuhiko Ishikawa, and Kazumi Wada  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 15732-15738 (2011)
http://dx.doi.org/10.1364/OE.19.015732


View Full Text Article

Enhanced HTML    Acrobat PDF (997 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an approach for tuning a gain spectrum of semiconductor lasers under temperature fluctuations, where the heat-induced effect is dynamically compensated using a mechanical stressing. By stressing GaAs/Ge/Si microbeams, emission wavelength tuning is experimentally demonstrated for the overlying GaAs layers as a proof-of-concept, and the results are followed by theoretical calculations. It is discussed that this approach is effective to cancel the gain spectrum shift and will be indispensable to the integration of light sources toward WDM systems on a chip.

© 2011 OSA

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

History
Original Manuscript: April 21, 2011
Revised Manuscript: June 30, 2011
Manuscript Accepted: July 1, 2011
Published: August 2, 2011

Citation
Yu Horie, Laurent Décosterd, Ryota Suzuki, Yasuhiko Ishikawa, and Kazumi Wada, "Emission wavelength tuning by mechanical stressing of GaAs/Ge/Si microbeams," Opt. Express 19, 15732-15738 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-15732


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). [CrossRef]
  2. K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.
  3. A. Fang, H. Park, O. Cohen, R. Jones, M. Paniccia, and J. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20) 9203–9210 (2006). [CrossRef] [PubMed]
  4. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5) 679–681 (2010). [CrossRef] [PubMed]
  5. H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-limited microprocessors: direct temperature and power distribution measurements,” IEEE J. Solid-State Circuits 42(1), 56–65 (2007). [CrossRef]
  6. D. A. Cohen, B. Mason, J. Dolan, C. Burns, and L. A. Coldren, “Enhanced wavelength tuning of an InGaAsP-InP laser with a thermal-strain-magnifying trench,” Appl. Phys. Lett. 77(17), 2629–2671 (2000). [CrossRef]
  7. P. Kozodoy, T. A. Strand, Y. A. Akulova, G. Fish, C. Schow, P. -C. Koh, Z. Bian, J. Christofferson, and A. Shakouri, “Thermal effects in monolithically integrated tunable laser transmitters,” IEEE Trans. Comp. Pack. Manuf. Tech. 28(4), 651–657 (2005). [CrossRef]
  8. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B 49(11), 7408–7417 (1994). [CrossRef]
  9. K. Yoshimoto, R. Suzuki, Y. Ishikawa, and K. Wada, “Bandgap control using strained beam structures for Si photonic devices,” Opt. Express. 18 (25) 26492–26498 (2010). [CrossRef] [PubMed]
  10. S. L. Chuang, Physics of Photonic Devices (Wiley, New York, 2009).
  11. Ioffe Physico-Technical Institute, “New semiconductor materials, characters and properties,” http://www.ioffe.rssi.ru/SVA/NSM/Semicond/ .
  12. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B 39(3), 1871–1883 (1989). [CrossRef]
  13. Y. Bolkhovityanov and O. Pchelyakov, “GaAs epitaxy on Si substrates: modern status of research and engineering,” UFN 178(5), 437–456 (2008).
  14. M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003). [CrossRef]
  15. M. E. Groenert, A. J. Pitera, R. J. Ram, and E. A. Fitzgerald, “Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded GeSi buffer layers,” J. Vac. Sci. Technol. B 21(3), 1064–1069 (2003). [CrossRef]
  16. H. -C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999). [CrossRef]
  17. Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003). [CrossRef]
  18. N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito, and D. McIntyre, “Photoreflectance characterization of OMVPE GaAs on Si,” J. Cryst. Growth 93481–486 (1988). [CrossRef]
  19. W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20(11), 885–887 (2008). [CrossRef]
  20. V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. C. Kmerling, “Athermal operation of Silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18(17), 17631–17639 (2010). [CrossRef] [PubMed]
  21. P. Kirkby, P. Selway, and L. Westbrook, “Photoelastic waveguides and their effect on stripe-geometry GaAs/Ga1–xAlxAs lasers,” J. Appl. Phys. 50(7), 4567–4579 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited