OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 15833–15842

A design method of lithium niobate on insulator ridge waveguides without leakage loss

Emi Saitoh, Yuki Kawaguchi, Kunimasa Saitoh, and Masanori Koshiba  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 15833-15842 (2011)
http://dx.doi.org/10.1364/OE.19.015833


View Full Text Article

Enhanced HTML    Acrobat PDF (800 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We evaluate structural dependency of leakage losses in lithium niobate on insulator ridge waveguides. Generally, shallow ridge waveguides based on isotropic materials have inherent leakage loss for TM-like mode. On the other hand, lithium niobate is anisotropic material, thus the optical properties of lithium niobate based ridge waveguides are different from those of isotopic material based ridge waveguides. In this paper, we investigate leakage losses of lithium niobate on insulator ridge waveguides. We show that the shallow ridge waveguide structure without leakage loss can be realized by choosing the waveguide parameters adequately.

© 2011 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3120) Integrated optics : Integrated optics devices
(130.3730) Integrated optics : Lithium niobate
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: April 18, 2011
Revised Manuscript: June 2, 2011
Manuscript Accepted: July 20, 2011
Published: August 4, 2011

Citation
Emi Saitoh, Yuki Kawaguchi, Kunimasa Saitoh, and Masanori Koshiba, "A design method of lithium niobate on insulator ridge waveguides without leakage loss," Opt. Express 19, 15833-15842 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-15833


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998). [CrossRef]
  2. T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(No. 5B), L673–L675 (2004). [CrossRef]
  3. A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron. E 85-C, 1033–1038 (2002).
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  5. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  6. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985). [CrossRef]
  7. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000). [CrossRef]
  8. R. C. Alferness, “Efficient waveguide electro-optic TE⇔TM mode converter / wavelength filter,” Appl. Phys. Lett. 36(7), 513–515 (1980). [CrossRef]
  9. M. Papuchon and S. Vatoux, “Integrated optical polariser on LiNbO3:Ti channel waveguides using proton exchange,” Electron. Lett. 19(16), 612–613 (1983). [CrossRef]
  10. C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000). [CrossRef]
  11. M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEE Proc. Pt. J 135, 85–91 (1988).
  12. P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004). [CrossRef]
  13. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005). [CrossRef]
  14. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009). [CrossRef] [PubMed]
  15. M. Koechlin, F. Sulser, Z. Sitar, G. Poberaj, and P. Günter, “Free-standing lithium niobate microring resonators for hybrid integrated optics,” IEEE Photon. Technol. Lett. 22(4), 251–253 (2010). [CrossRef]
  16. M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19(6), 429–431 (2007). [CrossRef]
  17. M. Koshiba, K. Kakihara, and K. Saitoh, “Reduced lateral leakage losses of TM-like modes in silicon-on-insulator ridge waveguides,” Opt. Lett. 33(17), 2008–2010 (2008). [CrossRef] [PubMed]
  18. K. Kakihara, K. Saitoh, and M. Koshiba, “Generalized simple theory for estimating lateral leakage loss behavior in silicon-on-insulator ridge waveguides,” J. Lightwave Technol. 27(23), 5492–5499 (2009). [CrossRef]
  19. G. W. Burr, S. Diziain, and M.-P. Bernal, “Theoretical study of lithium niobate slab waveguides for integrated optics applications,” Opt. Mater. 31(10), 1492–1497 (2009). [CrossRef]
  20. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element schme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited