OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 15843–15854

Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide

Shiyang Zhu, G. Q. Lo, and D. L. Kwong  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 15843-15854 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1182 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An ultracompact integrated silicide Schottky barrier detector (SBD) is designed and theoretically investigated to electrically detect the surface plasmon polariton (SPP) propagating along horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides at the telecommunication wavelength of 1550 nm. An ultrathin silicide layer inserted between the silicon core and the insulator, which can be fabricated precisely using the well-developed self-aligned silicide process, absorbs the SPP power effectively if a suitable silicide is chosen. Moreover, the Schottky barrier height in the silicide-silicon-silicide configuration can be tuned substantially by the external voltage through the Schottky effect owing to the very narrow silicon core. For a TaSi2 detector with optimized dimensions, numerical simulation predicts responsivity of ~0.07 A/W, speed of ~60 GHz, dark current of ~66 nA at room temperature, and minimum detectable power of ~-29 dBm. The design also suggests that the device’s size can be reduced and the overall performances will be further improved if a silicide with smaller permittivity is used.

© 2011 OSA

OCIS Codes
(230.0040) Optical devices : Detectors
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:

Original Manuscript: May 5, 2011
Revised Manuscript: July 6, 2011
Manuscript Accepted: July 13, 2011
Published: August 4, 2011

Shiyang Zhu, G. Q. Lo, and D. L. Kwong, "Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide," Opt. Express 19, 15843-15854 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Deleonibus, Electronic Device Architectures for the Nano-CMOS Era: from Ultimate CMOS Scaling to Beyond CMOS Devices (Pan Stanford Publishing, 2009), Chapter 6.
  2. G. T. Reed, Silicon Photonics: The State of the Art (John Wiley & Sons, Ltd., 2008)
  3. M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008). [CrossRef]
  4. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer Science + Business Media LLC, 2007).
  5. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  6. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006). [CrossRef] [PubMed]
  7. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006). [CrossRef] [PubMed]
  8. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009). [CrossRef] [PubMed]
  9. I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, “Local electrical detection of single nanoparticle plasmon resonance,” Nano Lett. 7(3), 703–706 (2007). [CrossRef] [PubMed]
  10. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009). [CrossRef]
  11. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17(13), 10757–10766 (2009). [CrossRef] [PubMed]
  12. P. Bai, M. X. Gu, X. C. Wei, and E. P. Li, “Electrical detection of plasmonic waves using an ultra-compact structure via a nanocavity,” Opt. Express 17(26), 24349–24357 (2009). [CrossRef] [PubMed]
  13. D. S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1473–1478 (2008). [CrossRef]
  14. A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single plasmon sources,” Nat. Phys. 5(7), 475–479 (2009). [CrossRef]
  15. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011). [CrossRef]
  16. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011). [CrossRef] [PubMed]
  17. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. (to be published). [PubMed]
  18. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18(26), 27802–27819 (2010). [CrossRef] [PubMed]
  19. K. W. Ang, S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “High-performance waveguided Ge-on-SOI metal-semiconductor-metal photodetectors with novel silicon-carbon (Si:C) Schottky barrier enhancement layer,” IEEE Photon. Technol. Lett. 20(9), 754–756 (2008). [CrossRef]
  20. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008). [CrossRef]
  21. W. A. Cabanski and M. J. Schulz, “Electronic and IR-optical properties of silicide silicon interfaces,” Infrared Phys. 32, 29–44 (1991). [CrossRef]
  22. C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010). [CrossRef]
  23. W. F. Kosonocky, F. W. Shallcross, T. S. Villani, and J. V. Groppe, “160×244 element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron. Dev. 32(8), 1564–1573 (1985). [CrossRef]
  24. S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008). [CrossRef]
  25. S. Y. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, “Silicide Schottky-barrier phototransistor integrated in silicon channel waveguide for in-line power monitoring,” IEEE Photon. Technol. Lett. 21(1–4), 185–187 (2009). [CrossRef]
  26. C. Schwarz and H. von Kanel, “Tunable infrared detector with epitaxial silicide/silicon heterostructures,” J. Appl. Phys. 79(11), 8798–8807 (1996). [CrossRef]
  27. C. Schwarz, U. Scharer, P. Sutter, R. Stalder, N. Onda, and H. von Kanel, “Application of epitaxial CoSi2/Si/CoSi2 heterostructures to tunable Schottky-barrier detectors,” J. Cryst. Growth 127(1-4), 659–662 (1993). [CrossRef]
  28. http://www.rsoftinc.com
  29. N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007). [CrossRef]
  30. http://refractiveindex.info
  31. http://www.ioffe.ru/SVA/NSM/nk/index.html
  32. J. M. Mooney, “Infrared optical absorption of thin PtSi films between 1 and 6 µm,” J. Appl. Phys. 64(9), 4664–4667 (1988). [CrossRef]
  33. F. Nava, K. N. Tu, O. Thomas, J. P. Senateur, R. Madar, A. Borghesi, G. Guizzetti, U. Gottlieb, O. Laborde, and O. Bisi, “Electrical and optical properties of silicide single crystals and thin films,” Mater. Sci. Rep. 9(4-5), 141–200 (1993). [CrossRef]
  34. S. Y. Zhu, R. L. van Meirhaeghe, C. Detavernier, F. Cardon, G. P. Ru, and B. Z. Li, “Barrier height inhomogeneties of epitaxial CoSi2 Schottky contacts on n-Si (100) and (111),” Solid-State Electron. 44(4), 663–671 (2000). [CrossRef]
  35. A. Noya, M. Takeyama, K. Sasaki, and T. Nakanishi, “First phase nucleation of metal-rich silicide in Ta/Si systems,” J. Appl. Phys. 76(6), 3893–3895 (1994). [CrossRef]
  36. J. Pelleg and N. Goldshleger, “Silicide formation in the Ta/Ti/Si system by recation of codeposited Ta and Ti with Si (100) and (111) substrates,” J. Appl. Phys. 85(3), 1531–1539 (1999). [CrossRef]
  37. M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010). [CrossRef] [PubMed]
  38. R. T. Tung, “Recent advances in Schottky barrier concepts,” Mater. Sci. Eng. Rep. 35(1-3), 1–138 (2001). [CrossRef]
  39. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley & Sons Inc. Pub., 2007).
  40. C. Scales, I. Breukelaar, and P. Berini, “Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon,” Opt. Lett. 35(4), 529–531 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited