OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 15864–15878

Tuning a racetrack ring resonator by an integrated dielectric MEMS cantilever

S.M.C. Abdulla, L.J. Kauppinen, M. Dijkstra, M.J. de Boer, E. Berenschot, H.V. Jansen, R.M. de Ridder, and G.J.M. Krijnen  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 15864-15878 (2011)
http://dx.doi.org/10.1364/OE.19.015864


View Full Text Article

Enhanced HTML    Acrobat PDF (1964 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The principle, fabrication and characterization of a dielectric MEMS cantilever located a few 100 nm above a racetrack ring resonator are presented. After fabrication of the resonators on silicon-on-insulator (SOI) wafers in a foundry process, the cantilevers were integrated by surface micromachining techniques. Off-state deflections of the cantilevers have been optimized to appropriately position them near the evanescent field of the resonator. Using electrostatic actuation, moving the cantilevers into this evanescent field, the propagation properties of the ring waveguide are modulated. We demonstrate 122 pm tuning of the resonance wavelength of the optical ring resonator (in the optical C-band) without change of the optical quality factor, on application of 9 V to a 40 µm long cantilever. This compact integrated device can be used for tuning/switching a specific wavelength, with very little energy for operation and negligible cross talk with surrounding devices.

© 2011 OSA

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(130.3120) Integrated optics : Integrated optics devices
(220.4610) Optical design and fabrication : Optical fabrication
(230.4685) Optical devices : Optical microelectromechanical devices
(130.4815) Integrated optics : Optical switching devices
(070.5753) Fourier optics and signal processing : Resonators
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: May 26, 2011
Revised Manuscript: July 20, 2011
Manuscript Accepted: July 20, 2011
Published: August 4, 2011

Citation
S.M.C. Abdulla, L.J. Kauppinen, M. Dijkstra, M.J. de Boer, E. Berenschot, H.V. Jansen, R.M. de Ridder, and G.J.M. Krijnen, "Tuning a racetrack ring resonator by an integrated dielectric MEMS cantilever," Opt. Express 19, 15864-15878 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-15864


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. G. Rabus, Z. Bian, and A. Shakouri, “Ring resonator lasers using passive waveguides and integrated semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1249–1256 (2007). [CrossRef]
  2. G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17(6), 1190–1192 (2005). [CrossRef]
  3. P. T. Rakich, M. A. Popovic, M. R. Watts, T. Barwicz, H. I. Smith, and E. P. Ippen, “Ultrawide tuning of photonic microcavities via evanescent field perturbation,” Opt. Lett. 31(9), 1241–1243 (2006). [CrossRef] [PubMed]
  4. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, “Cascaded microring resonators for crosstalk reduction and spectrum cleanup in Add–Drop filters,” IEEE Photon. Technol. Lett. 11(11), 1423–1425 (1999). [CrossRef]
  5. A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006). [CrossRef]
  6. E. J. Klein, “Densely integrated microringresonator based components for fiber-to-the home applications,” PhD thesis, University of Twente, ISBN 978–90–265–2495 (2007).
  7. L. J. Kauppinen, “Compact integrated optical devices for optical sensor and switching applications,” PhD thesis, University of Twente, ISBN 978–90–365–3088–0 (2010).
  8. S. M. C. Abdulla, “Integration of microcantilevers with photonic structures for mechano-optical wavelength selective devices,” PhD thesis, University of Twente, ISBN 978–90–365–3176–4 (2011).
  9. S. M. C. Abdulla, L. J. Kauppinen, M. Dijkstra, M. J. de Boer, E. Berenschot, R. M. de Ridder, and G. J. M. Krijnen, “Monolithically integrated cantilevers with self-aligned tips for wavelength tuning in a photonic crystal cavity-based channel-drop filter,” J. Micromech. Microeng. 21(7), 074004–0740046 (2011). [CrossRef]
  10. L. J. Kauppinen, S. M. C. Abdulla, M. Dijkstra, M. J. de Boer, E. Berenschot, G. J. M. Krijnen, M. Pollnau, and R. M. de Ridder, “Micromechanically tuned ring resonator in silicon on insulator,” Opt. Lett. 36(7), 1047–1049 (2011). [CrossRef] [PubMed]
  11. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “M. Ayre1, W. Bogaerts, D. Van Thourhout, P. Bienstman and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006). [CrossRef]
  12. P. Dumon, W. Bogaerts, R. Baets, J. M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009). [CrossRef]
  13. S. M.C.Abdulla, Transducers Science and Technology Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands and E. Berenschot, M. Dijkstra, M.J. de Boer, Y. Zhao, H.V. Jansen and G.J.M. Krijnen are preparing a manuscript to be called, “Stringer elimination methods in surface micro and nanomachining.”
  14. J. G. E. Gardeniers, H. A. C. Tilmans, and C. C. G. Visser, “LPCVD silicon-rich silicon nitride films for applications in micromechanics, studied with statistical experimental design,” J. Vac. Sci. Technol. A 14(5), 2879–2892 (1996). [CrossRef]
  15. H. Jansen, H. Gardeniers, M. de Boer, M. Elwenspoek, and J. Fluitman, “A survey on the reactive ion etching of silicon in microtechnology,” J. Micromech. Microeng. 6(1), 14–28 (1996). [CrossRef]
  16. H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: An in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng. 19(3), 033001 (2009). [CrossRef]
  17. R. Legtenberg and H. A. C. Tilmans, “Electrostatically driven vacuum-encapsulated polysilicon resonators Part I. Design and fabrication,” Sens. Actuators A Phys. 45(1), 57–66 (1994). [CrossRef]
  18. S. Pamidighantam, R. Puers, K. Baert, and H. A. C. Tilmans, “Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions,” J. Micromech. Microeng. 12(4), 458–464 (2002). [CrossRef]
  19. P. Mela, N. R. Tas, E. J. Berenschot, J. van Nieuwkasteele, and A. van den Berg, “Electrokinetic pumping and detection of low-volume flows in nanochannels,” Electrophoresis 25(21-22), 3687–3693 (2004). [CrossRef] [PubMed]
  20. S. D. Senturia, Microsystem Design (Kluwer Academic Publishers, Boston, MA 2001).
  21. N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, and M. Elwenspoek, “Stiction in surface micromachining,” J. Micromech. Microeng. 6(4), 385–397 (1996). [CrossRef]
  22. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17(4), 2968–2975 (2009). [CrossRef] [PubMed]
  23. M. Lipson, “Compact Electro-Optic Modulators on a Silicon Chip,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1520–1526 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited