OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 15908–15918

Optical design of organic solar cell with hybrid plasmonic system

Wei E. I. Sha, Wallace C. H. Choy, Yongpin P. Chen, and Weng Cho Chew  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 15908-15918 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1762 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel optical design of organic solar cell with a hybrid plasmonic system, which comprises a plasmonic cavity coupled with a dielectric core-metal shell nanosphere. From a rigorous solution of Maxwell’s equations, called volume integral equation method, optical absorption of the active polymer material has a four-fold increase. The significant enhancement mainly attributes to the coupling of symmetric surface wave modes supported by the cavity resonator. The dispersion relation of the plasmonic cavity is characterized by solving an 1D eigenvalue problem of the air/metal/polymer/metal/air structure with finite thicknesses of metal layers. We demonstrate that the optical enhancement strongly depends on the decay length of surface plasmon waves penetrated into the active material. Furthermore, the coherent interplay between the cavity and the dielectric core-metal shell nanosphere is undoubtedly confirmed by our theoretical model. The work offers detailed physical explanations to the hybrid plasmonic cavity device structure for enhancing the optical absorption of organic photovoltaics.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Solar Energy

Original Manuscript: June 7, 2011
Revised Manuscript: July 14, 2011
Manuscript Accepted: July 15, 2011
Published: August 4, 2011

Wei E. I. Sha, Wallace C. H. Choy, Yongpin P. Chen, and Weng Cho Chew, "Optical design of organic solar cell with hybrid plasmonic system," Opt. Express 19, 15908-15918 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovoltaics 12, 69–92 (2004). [CrossRef]
  2. H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res. 19, 1924–1945 (2004). [CrossRef]
  3. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009). [CrossRef]
  4. W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “A comprehensive study for the plasmonic thin-film solar cell with periodic structure,” Opt. Express 18, 5993–6007 (2010). [CrossRef] [PubMed]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  6. J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010). [CrossRef] [PubMed]
  7. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  8. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef] [PubMed]
  9. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008). [CrossRef]
  10. W. L. Bai, Q. Q. Gan, G. F. Song, L. H. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express 18, A620–A630 (2010). [CrossRef] [PubMed]
  11. M. G. Kang, T. Xu, H. J. Park, X. G. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22, 4378–4383 (2010). [CrossRef] [PubMed]
  12. C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010). [CrossRef]
  13. W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett. 36, 478–480 (2011). [CrossRef] [PubMed]
  14. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009). [CrossRef]
  15. J. Jung, T. G. Pedersen, T. Sondergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B 81, 125413 (2010). [CrossRef]
  16. S. J. Tsai, M. Ballarotto, D. B. Romero, W. N. Herman, H. C. Kan, and R. J. Phaneuf, “Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell,” Opt. Express 18, A528–A535 (2010). [CrossRef] [PubMed]
  17. I. Diukman, L. Tzabari, N. Berkovitch, N. Tessler, and M. Orenstein, “Controlling absorption enhancement in organic photovoltaic cells by patterning Au nano disks within the active layer,” Opt. Express 19, A64–A71 (2011). [CrossRef] [PubMed]
  18. J. Jung, T. Sondergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011). [CrossRef]
  19. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008). [CrossRef]
  20. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994). [CrossRef]
  21. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A 26, 732–740 (2009). [CrossRef]
  22. A. W. Glisson and D. R. Wilton, “Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces,” IEEE Trans. Antennas Propag. 28, 593–603 (1980). [CrossRef]
  23. M. F. Catedra, E. Gago, and L. Nuno, “A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the conjugate gradient method and the fast Fourier transform,” IEEE Trans. Antennas Propag. 37, 528–537 (1989). [CrossRef]
  24. H. A. Vandervorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 13, 631–644 (1992). [CrossRef]
  25. W. C. H. Choy and H. H. Fong, “Comprehensive investigation of absolute optical properties of organic materials,” J. Phys. D: Appl. Phys. 41, 155109 (2008). [CrossRef]
  26. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  28. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003). [CrossRef] [PubMed]
  29. W. C. Chew, Waves and Fields in Inhomogenous Media (Wiley-IEEE Press, 1999). [CrossRef]
  30. L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, 2000). [CrossRef]
  31. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric-constant,” Phys. Rev. B 44, 13556–13572 (1991). [CrossRef]
  32. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  33. W. C. Chew and W. H. Weedon, “A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microw. Opt. Technol. Lett. 7, 599–604 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited