OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 15919–15928

Controlling the length of plasma waveguide up to 5 mm, produced by femtosecond laser pulses in atomic clustered gas

Walid Tawfik Mohamed, Guanglong Chen, Jaehoon Kim, Geng Xiao Tao, Jungkwen Ahn, and Dong Eon Kim  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 15919-15928 (2011)
http://dx.doi.org/10.1364/OE.19.015919


View Full Text Article

Enhanced HTML    Acrobat PDF (891 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the observation of longitudinally uniform plasma waveguide with a controlled length of up to nearly 5 mm, in argon clustered gas jet. This self-channeling plasma is obtained using a 35 mJ, 30 fs FWHM pulse as a pump laser pulse to create the plasma channel. A 1 mJ pulse of the same laser is used for probing the plasma channels using interferometric diagnostics. The radial distribution of the electron density confirms the formation of a plasma waveguide. Clustered argon enhances the absorption efficiency of femtosecond pulses which enables the use of pump pulses of only 35 mJ, approximately 10 times less energy than required for heating conventional gas targets. The plasma channel length is controlled by the laser focus point (F), the laser intensity (I), the pump-probe delay time (t) and the laser height from a nozzle (z). The variation of the electron density for these parameters is also studied. We found that the highest density of 1.2 x 1019 cm−3 was obtained at I = 5.2 x 1016 W/cm2, z = 2 mm and t = 7.6 ns. It was demonstrated that by using a clustered jet, both the plasma waveguide length and the plasma density could be controlled.

© 2011 OSA

OCIS Codes
(320.0320) Ultrafast optics : Ultrafast optics
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Ultrafast Optics

History
Original Manuscript: June 7, 2011
Revised Manuscript: July 22, 2011
Manuscript Accepted: July 22, 2011
Published: August 4, 2011

Citation
Walid Tawfik Mohamed, Guanglong Chen, Jaehoon Kim, Geng Xiao Tao, Jungkwen Ahn, and Dong Eon Kim, "Controlling the length of plasma waveguide up to 5 mm, produced by femtosecond laser pulses in atomic clustered gas," Opt. Express 19, 15919-15928 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-15919


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. P. Leemans, P. Volfbeyn, K. Z. Guo, S. Chattopadhyay, C. B. Schroeder, B. A. Shadwick, P. B. Lee, J. S. Wurtele, and E. Esarey, “Laser-driven plasma-based accelerators: Wakefield excitation, channel guiding, and laser triggered particle injection,” Phys. Plasmas 5(5), 1615–1623 (1998). [CrossRef]
  2. X. F. Li, A. L’Huillier, M. Ferray, L. A. Lompré, and G. Mainfray, “Multiple-harmonic generation in rare gases at high laser intensity,” Phys. Rev. A 39(11), 5751–5761 (1989). [CrossRef] [PubMed]
  3. J. Denavit and D. W. Phillion, “Laser ionization and heating of gas targets for long-scale-length instability experiments,” Phys. Plasmas 1(6), 1971 (1994). [CrossRef]
  4. A. McPherson, B. D. Thompson, A. B. Borisov, K. Boyer, and C. K. Rhodes, “Multi-photon induced x-ray emission at 4-5 keV from Xe atoms with multiple core vacancies,” Nature 370(6491), 631–634 (1994). [CrossRef]
  5. W. G. John Tisch, “Phase-matched high-order harmonic generation in an ionized medium using a buffer gas of exploding atomic clusters,” Phys. Rev. A 62, 041802(R) (2000).
  6. S. B. Hansen, K. B. Fournier, A. Y. Faenov, A. I. Magunov, T. A. Pikuz, I. Y. Skobelev, Y. Fukuda, Y. Akahane, M. Aoyama, N. Inoue, H. Ueda, and K. Yamakawa, “Measurement of 2l-nl’ x-ray transitions from approximately 1 μm Kr clusters irradiated by high-intensity femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1 Pt 2), 016408 (2005). [CrossRef] [PubMed]
  7. Y. Fukuda, K. Yamakawa, Y. Akahane, M. Aoyama, N. Inoue, H. Ueda, and Y. Kishimoto, “Optimized Energetic Particle Emissions from Xe Cluster in Intense Laser Fields,” Phys. Rev. A 67(6), 061201 (2003). [CrossRef]
  8. V. Malka, E. D. Wispelaere, F. Amiranoff, S. Baton, R. Bonadio, C. Coulaud, and R. Haroutunian, “channel Formation in Long Laser Pulse Interaction with a Helium Gas Jet,” Phys. Rev. Lett. 79(16), 2979–2982 (1997). [CrossRef]
  9. H. M. Milchberg, K. Y. Kim, V. Kumarappan, B. D. Layer, and H. Sheng, “Clustered gases as a medium for efficient plasma waveguide generation,” Philos. Transact. A Math. Phys. Eng. Sci. 364(1840), 647–661 (2006). [CrossRef] [PubMed]
  10. A. B. Borisov, A. V. Borovskiy, O. B. Shiryaev, V. V. Korobkin, A. M. Prokhorov, J. C. Solem, T. S. Luk, K. Boyer, and C. K. Rhodes, “Relativistic and charge-displacement self-channeling of intense ultrashort laser pulses in plasmas,” Phys. Rev. A 45(8), 5830–5845 (1992). [CrossRef] [PubMed]
  11. J. F. Herbstman and A. J. Hunt, “High-aspect ratio nanochannel formation by single femtosecond laser pulses,” Opt. Express 18(16), 16840–16848 (2010). [CrossRef] [PubMed]
  12. A. B. Borisov, X. Shi, V. B. Karpov, V. V. Korobkin, J. C. Solem, O. B. Shiryaev, A. McPherson, K. Boyer, and C. K. Rhodes, “Stable self-channeling of intense ultraviolet pulses in underdense plasma, producing channels exceeding 100 Rayleigh lengths,” J. Opt. Soc. Am. B 11(10), 1941–1947 (1994). [CrossRef]
  13. J. Fuchs, G. Malka, J. C. Adam, F. Amiranoff, S. D. Baton, N. Blanchot, A. Héron, G. Laval, J. L. Migel, P. Mora, H. Pépin, and C. Rousseaux, “Dynamics of Subpicosecond Relativistic Laser Pulse Self-Channeling in an Underdense Preformed Plasma,” Phys. Rev. Lett. 80(8), 1658–1661 (1998). [CrossRef]
  14. O. F. Hagena, “Condensation in Free Jets: Comparison of Rare Gases and Metals,” Z. Phys. D 4(3), 291–299 (1987). [CrossRef]
  15. Y. L. Shao, T. Ditmire, J. W. G. Tisch, E. Springate, J. P. Marangos, and M. H. R. Hutchinson, “Multi-keV Electron Generation in the Interaction of Intense Laser Pulses with Xe Clusters,” Phys. Rev. Lett. 77(16), 3343–3346 (1996). [CrossRef] [PubMed]
  16. T. Ditmire, J. W. G. Tisch, E. Springate, M. B. Mason, N. Hay, R. A. Smith, J. P. Marangos, and M. H. R. Hutchinson, “Nuclear Fusion from Explosions of Femtosecond Laser-Heated Deuterium Clusters,” Nature 386, 54 (1997). [CrossRef]
  17. T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, “Interaction of intense laser pulses with atomic clusters,” Phys. Rev. A 53(5), 3379–3402 (1996). [CrossRef] [PubMed]
  18. T. Ditmire, R. A. Smith, J. W. G. Tisch, and M. H. R. Hutchinson, “High Intensity Laser Absorption by Gases of Atomic Clusters,” Phys. Rev. Lett. 78(16), 3121–3124 (1997). [CrossRef]
  19. H. M. Milchberg, S. J. McNaught, and E. Parra, “Plasma hydrodynamics of the intense laser-cluster interaction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 056402 (2001). [CrossRef] [PubMed]
  20. K. Y. Kim, I. Alexeev, E. Parra, and H. M. Milchberg, “Time-resolved explosion of intense-laser-heated clusters,” Phys. Rev. Lett. 90(2), 023401 (2003). [CrossRef] [PubMed]
  21. I. Alexeev, T. M. Antonsen, K. Y. Kim, and H. M. Milchberg, “Self-focusing of intense laser pulses in a clustered gas,” Phys. Rev. Lett. 90(10), 103402 (2003). [CrossRef] [PubMed]
  22. K. Y. Kim, V. Kumarappan, and H. M. Milchberg, “Measurement of the average size and density of clusters in a gas jet,” Appl. Phys. Lett. 83(15), 3210 (2003). [CrossRef]
  23. K. Y. Kim, H. M. Milchberg, A. Ya. Faenov, A. I. Magunov, T. A. Pikuz, and I. Yu. Skobelev, “X-ray spectroscopy of 1 cm plasma channels produced by self-guided pulse propagation in elongated cluster jets,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(6), 066403 (2006). [CrossRef] [PubMed]
  24. B. D. Layer, A. G. York, S. Varma, Y. H. Chen, and H. M. Milchberg, “Periodic index-modulated plasma waveguide,” Opt. Express 17(6), 4263–4267 (2009). [CrossRef] [PubMed]
  25. B. C. Walker, C. Toth, D. N. Fittinghoff, T. Guo, D.-E. Kim, C. Rose-Petruck, J. A. Squier, K. Yamakawa, K. R. Wilson, and C. Barty, “A 50 EW/cm;2 Ti:sapphire laser system for studying relativistic light-matter interactions,” Opt. Express 5(10), 196–202 (1999). [CrossRef] [PubMed]
  26. G. Chen, B. Kim, B. Ahn, and D.-E. Kim, “Pressure dependence of argon cluster size for different nozzle geometries,” J. Appl. Phys. 106(5), 053507 (2009). [CrossRef]
  27. I. H. Hutchinson, “Principles of Plasma Diagnostics,” Cambridge University Press, New York, (1987).
  28. A. E. Seigman, “Lasers” University Science Books, Mill Valley, California, section 17 (1986).
  29. G. Chen, B. Kim, B. Ahn, and D.-E. Kim, “Experimental investigation on argon cluster sizes for conical nozzles with different opening angles,” J. Appl. Phys. 108, 1 (2010), http://link.aip.org/link/?JAPIAU/108/064329/1 .
  30. O. F. Hagena and W. Obert, “Cluster Formation in Expanding Supersonic Jets: Effect of Pressure, Temperature, Nozzle Size, and Test Gas,” J. Chem. Phys. 56(5), 1793 (1972). [CrossRef]
  31. O. F. Hagena, “Cluster ion sources,” Rev. Sci. Instrum. 63(4), 2374 (1992), http://link.aip.org/link/doi/10.1063/1.1142933 . [CrossRef]
  32. T. Ditmire, R. A. Smith, and M. H. R. Hutchinson, “Plasma waveguide formation in predissociated clustering gases,” Opt. Lett. 23(5), 322–324 (1998), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-23-5-322 . [CrossRef] [PubMed]
  33. S. Augst, D. D. Meyerhofer, D. Strickland, and S. L. Chin, “Laser ionization of noble gases by Coulomb-barrier suppression,” J. Opt. Soc. Am. B 8(4), 858 (1991), http://www.opticsinfobase.org/abstract.cfm?&id=5984 . [CrossRef]
  34. V. Kumarappan, K. Y. Kim, and H. M. Milchberg, “Guiding of intense laser pulses in plasma waveguides produced from efficient, femtosecond end-pumped heating of clustered gases,” Phys. Rev. Lett. 94(20), 205004 (2005). [CrossRef] [PubMed]
  35. M. Nakatsutsumi, J.-R. Marquès, P. Antici, N. Bourgeois, J. L. Feugeas, T. Lin, Ph. Nicolaï, L. Romagnani, R. Kodama, P. Audebert, and J. Fuchs, “High-power laser delocalization in plasmas leading to long-range beam merging,” Nat. Phys. 6(12), 1010–1016 (2010). [CrossRef]
  36. J. Fan, E. Parra, and H. M. Milchberg, “Resonant self-trapping and absorption of intense bessel beams,” Phys. Rev. Lett. 84(14), 3085–3088 (2000), http://prl.aps.org/abstract/PRL/v84/i14/p3085_1 . [CrossRef] [PubMed]
  37. H. C. Man, J. Duan, and T. M. Yue, “Dynamic characteristics of gas jets from subsonic and supersonic slit nozzles for high pressure gas laser cutting,” Opt. Laser Technol. 30(8), 497–509 (1998). [CrossRef]
  38. J. F. Han, C. W. Yanga, J. W. Miao, J. F. Lu, M. Liu, X. B. Luo, and M. G. Shi, “The spatial distribution of argon clusters in gas jet,” Eur. Phys. J. D 56(3), 347–352 (2010). [CrossRef]
  39. C. G. Durfee and H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71(15), 2409–2412 (1993), http://prl.aps.org/abstract/PRL/v71/i15/p2409_1 . [CrossRef] [PubMed]
  40. T. R. Clark and H. M. Milchberg, “Time- and Space-Resolved Density Evolution of the Plasma Waveguide,” Phys. Rev. Lett. 78(12), 2373–2376 (1997), http://prl.aps.org/abstract/PRL/v78/i12/p2373_1 . [CrossRef]
  41. Y. Ehrlich, A. Zigler, C. Cohen, J. Krall, and P. Sprangle, “Guiding of High Intensity Laser Pulses in Straight and Curved Plasma Channel Experiments, ” Phys. Rev. Lett. 77, 4186 (1996). http://prl.aps.org/abstract/PRL/v77/i20/p4186_ 1.
  42. C. W. Leemans, “Siders, E. Esarey, N. E. Andreev, G. Shvets, and W. B. Mori, “Plasma Guiding and Wakefield Generation for S econd-Generation Experiments,” IEEE Trans. Plasma Sci. 24 (2), 331–342 (1996), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=509997 . [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited