OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 15947–15954

Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam

Yuichi Kozawa, Terumasa Hibi, Aya Sato, Hibiki Horanai, Makoto Kurihara, Nobuyuki Hashimoto, Hiroyuki Yokoyama, Tomomi Nemoto, and Shunichi Sato  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 15947-15954 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2667 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that the lateral resolution of confocal laser scanning microscopy is dramatically improved by a higher-order radially polarized (HRP) beam with six concentric rings. This beam was generated simply by inserting liquid crystal devices in front of an objective lens. An HRP beam visualized aggregated 0.17 μm beads individually and is also applicable to biological imaging. This method can extend the capability of conventional laser scanning microscopes without modification of the system, with the exception of the addition of the liquid crystal devices in the optical path.

© 2011 OSA

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(180.1790) Microscopy : Confocal microscopy
(260.5430) Physical optics : Polarization
(350.5730) Other areas of optics : Resolution

ToC Category:

Original Manuscript: June 17, 2011
Revised Manuscript: July 29, 2011
Manuscript Accepted: July 29, 2011
Published: August 4, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Yuichi Kozawa, Terumasa Hibi, Aya Sato, Hibiki Horanai, Makoto Kurihara, Nobuyuki Hashimoto, Hiroyuki Yokoyama, Tomomi Nemoto, and Shunichi Sato, "Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam," Opt. Express 19, 15947-15954 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  2. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  3. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  4. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000). [CrossRef] [PubMed]
  5. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009). [CrossRef]
  6. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000). [CrossRef]
  7. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]
  8. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24(6), 1793–1798 (2007). [CrossRef] [PubMed]
  9. L. E. Helseth, “Roles of polarization, phase and amplitude in solid immersion lens systems,” Opt. Commun. 191(3-6), 161–172 (2001). [CrossRef]
  10. C. C. Sun and C. K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28(2), 99–101 (2003). [CrossRef] [PubMed]
  11. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008). [CrossRef]
  12. J. Kim, D. C. Kim, and S. H. Back, “Demonstration of high lateral resolution in laser confocal microscopy using annular and radially polarized light,” Microsc. Res. Tech. 72(6), 441–446 (2009). [CrossRef] [PubMed]
  13. K. Watanabe, M. Ryosuke, G. Terakado, T. Okazaki, K. Morigaki, and H. Kano, “High resolution imaging of patterned model biological membranes by localized surface plasmon microscopy,” Appl. Opt. 49(5), 887–891 (2010). [CrossRef] [PubMed]
  14. H. Dehez, M. Piché, and Y. De Koninck, “Enhanced resolution in two-photon imaging using a TM(01) laser beam at a dielectric interface,” Opt. Lett. 34(23), 3601–3603 (2009). [CrossRef] [PubMed]
  15. A. A. Tovar, “Production and propagation of cylindrically polarized Laguerre-Gaussian laser beams,” J. Opt. Soc. Am. A 15(10), 2705–2711 (1998). [CrossRef]
  16. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959). [CrossRef]
  17. C. J. R. Sheppard and P. Török, “An electromagnetic theory of imaging in fluorescence microscopy, and imaging in polarization fluorescence microscopy,” Bioimaging 5(4), 205–218 (1997). [CrossRef]
  18. P. Török, P. D. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers,” J. Mod. Opt. 45(8), 1681–1698 (1998). [CrossRef]
  19. P. D. Higdon, P. Török, and T. Wilson, “Imaging properties of high aperture multiphoton fluorescence scanning optical microscopes,” J. Microsc. 193(2), 127–141 (1999). [CrossRef]
  20. R. Hammoum, S. O. Saad Hamady, and M. D. Fontana, “Generalized model for incoherent detection in confocal optical microscopy,” Appl. Opt. 49(16), D96–D105 (2010). [CrossRef] [PubMed]
  21. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12(4), 227–229 (1987). [CrossRef] [PubMed]
  22. B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A. 105(38), 14271–14276 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited