OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 15965–15975

Atmospheric turbulence-induced fading channel model for space-to-ground laser communications links

Morio Toyoshima, Hideki Takenaka, and Yoshihisa Takayama  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 15965-15975 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1008 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The fading channel model for generating a random time-varying signal based on the atmospheric turbulence spectrum for space-to-ground laser links is discussed. The temporal frequency characteristics of the downlink are theoretically derived based on the von Karman spectrum. The rms wind speed based on the Bufton wind model is used as the transverse wind velocity, which makes the simulation simple. The time-varying signal is generated as functions of the receiver aperture diameter and the rms wind speed. The simulated result of the time-varying signal is presented and compared with the gamma-gamma distribution based on the scintillation theory in a moderate-to-strong-turbulence regime.

© 2011 OSA

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: June 20, 2011
Revised Manuscript: July 27, 2011
Manuscript Accepted: July 27, 2011
Published: August 4, 2011

Morio Toyoshima, Hideki Takenaka, and Yoshihisa Takayama, "Atmospheric turbulence-induced fading channel model for space-to-ground laser communications links," Opt. Express 19, 15965-15975 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. L. Fried, “Scintillation of a ground-to-space laser illuminator,” J. Opt. Soc. Am. 57(8), 980–983 (1967). [CrossRef]
  2. J. L. Bufton, “Scintillation statistics measured in an earth-space-earth retroreflector link,” Appl. Opt. 16(10), 2654–2660 (1977). [CrossRef] [PubMed]
  3. R. S. Lawrence and J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE 58(10), 1523–1545 (1970). [CrossRef]
  4. A. Ishimaru, “Temporal frequency spectra of multifrequency waves in turbulent atmosphere,” IEEE Trans. Antenn. Propag. 20(1), 10–19 (1972). [CrossRef]
  5. S. F. Clifford, “Temporal-frequency spectra for a spherical wave propagating through atmospheric turbulence,” J. Opt. Soc. Am. 61(10), 1285–1292 (1971). [CrossRef]
  6. D. P. Greenwood and D. L. Fried, “Power spectra requirements for wave-front-compensative systems,” J. Opt. Soc. Am. 66(3), 193–206 (1976). [CrossRef]
  7. D. P. Greenwood, “Bandwidth specification for adaptive optics systems,” J. Opt. Soc. Am. 67(3), 390–393 (1977). [CrossRef]
  8. E. Ryznar, “Dependency of optical scintillation frequency on wind speed,” Appl. Opt. 4(11), 1416–1418 (1965). [CrossRef]
  9. T. J. Gilmartin and R. R. Horning, “Spectral characteristics of intensity fluctuations on a laser beam propagating in a desert atmosphere,” IEEE J. Quantum Electron. 3(6), 254–256 (1967). [CrossRef]
  10. D. H. Höhn, “Effects of atmospheric turbulence on the transmission of a laser beam at 6328 A. II-frequency spectra,” Appl. Opt. 5(9), 1433–1436 (1966). [CrossRef] [PubMed]
  11. T. S. Chu, “On the wavelength dependence of the spectrum of laser beams traversing the atmosphere,” Appl. Opt. 6(1), 163–163 (1967). [CrossRef] [PubMed]
  12. G. A. Tyler, “Bandwidth considerations for tracking through turbulence,” J. Opt. Soc. Am. A 11(1), 358–367 (1994). [CrossRef]
  13. D. L. Fried, “Aperture averaging of scintillation,” J. Opt. Soc. Am. 57(2), 169–175 (1967). [CrossRef]
  14. P. J. Titterton, “Scintillation and transmitter-aperture averaging over vertical paths,” J. Opt. Soc. Am. 63(4), 439–444 (1973). [CrossRef]
  15. J. H. Churnside, “Aperture averaging of optical scintillations in the turbulent atmosphere,” Appl. Opt. 30(15), 1982–1994 (1991). [CrossRef] [PubMed]
  16. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, “Aperture averaging of optical scintillations: power fluctuations and the temporal spectrum,” Waves Random Media 10(1), 53–70 (2000). [CrossRef]
  17. M. Toyoshima, Y. Takayama, H. Kunimori, T. Jono, and K. Arai, “Data analysis results from the KODEN experiments,” Proc. SPIE 6709, 1–8 (2007).
  18. M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, and K. Shiratama, “Ground-to-OICETS laser communication experiments,” Proc. SPIE 6304, 63040B (2006).
  19. M. Toyoshima, H. Takenaka, Y. Shoji, and Y. Takayama, “Frequency characteristics of atmospheric turbulence in space-to-ground laser links,” Proc. SPIE 7685, 76850G, 76850G-12 (2010). [CrossRef]
  20. R. J. Hill and R. G. Frehlich, “Probability distribution of irradiance for the onset of strong scintillation,” J. Opt. Soc. Am. A 14(7), 1530–1540 (1997). [CrossRef]
  21. L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A 16(6), 1417–1429 (1999). [CrossRef]
  22. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, “Scintillation model for a satellite communication link at large zenith angles,” Opt. Eng. 39(12), 3272–3280 (2000). [CrossRef]
  23. A. Belmonte, “Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance,” Appl. Opt. 39(30), 5426–5445 (2000). [CrossRef] [PubMed]
  24. L. C. Andrews and R. L. Phillips, eds., Laser Beam Propagation through Random Media, 2nd ed. (SPIE Press, 2005).
  25. M. Toyoshima, Y. Takayama, H. Kunimori, S. Yamakawa, and T. Jono, “Characteristics of laser beam propagation through the turbulent atmosphere in ground-to-low earth orbit satellite laser communications links,” IEICE Trans. Commun. J94-B(3), 409–418 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited