OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 15990–15995

Higher order modes in photonic crystal slabs

Roman Gansch, Stefan Kalchmair, Hermann Detz, Aaron M. Andrews, Pavel Klang, Werner Schrenk, and Gottfried Strasser  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 15990-15995 (2011)
http://dx.doi.org/10.1364/OE.19.015990


View Full Text Article

Enhanced HTML    Acrobat PDF (1308 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a detailed investigation of higher order modes in photonic crystal slabs. In such structures the resonances exhibit a blue-shift compared to an ideal two-dimensional photonic crystal, which depends on the order of the slab mode and the polarization. By fabricating a series of photonic crystal slab photo detecting devices, with varying ratios of slab thickness to photonic crystal lattice constant, we are able to distinguish between 0th and 1st order slab modes as well as the polarization from the shift of resonances in the photocurrent spectra. This method complements the photonic band structure mapping technique for characterization of photonic crystal slabs.

© 2011 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: May 4, 2011
Revised Manuscript: June 10, 2011
Manuscript Accepted: June 16, 2011
Published: August 5, 2011

Citation
Roman Gansch, Stefan Kalchmair, Hermann Detz, Aaron M. Andrews, Pavel Klang, Werner Schrenk, and Gottfried Strasser, "Higher order modes in photonic crystal slabs," Opt. Express 19, 15990-15995 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-15990


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997). [CrossRef]
  3. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  4. S. Schartner, S. Golka, C. Pflügl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett. 89(15), 151107 (2006). [CrossRef]
  5. A. Benz, Ch. Deutsch, G. Fasching, K. Unterrainer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Active photonic crystal terahertz laser,” Opt. Express 17(2), 941–946 (2009). [CrossRef] [PubMed]
  6. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999). [CrossRef]
  7. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002). [CrossRef]
  8. S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011). [CrossRef]
  9. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  10. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302(5649), 1374–1377 (2003). [CrossRef] [PubMed]
  11. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007). [CrossRef]
  12. J. Yang, M. Seo, I. Hwang, S. Kim, and Y. Lee, “Polarization-selective resonant photonic crystal photodetector,” Appl. Phys. Lett. 93(21), 211103 (2008). [CrossRef]
  13. K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88(15), 151104 (2006). [CrossRef]
  14. L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansión method,” Phys. Rev. B 73(23), 235114 (2006). [CrossRef]
  15. B. F. Levine, “Quantum‐well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993). [CrossRef]
  16. H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors (Springer, 2007).
  17. V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60(24), R16255–R16258 (1999). [CrossRef]
  18. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004). [CrossRef] [PubMed]
  19. K. Inoue and K. Ohtaka, Photonic Crystals (Springer, 2004).
  20. S. Shi, C. Chen, and D. W. Prather, “Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 86(4), 043104 (2005). [CrossRef]
  21. V. Zabelin, “Numerical investigation of two-dimensional photonic crystal optical properties, design and analysis of photonic crystal based structures,” PhD thesis, (École Polytechnique Fédérale de Lausanne, 2009), http://library.epfl.ch/theses/?nr=4315 .
  22. T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63(12), 125107 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited