OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16126–16131

Random lasing from granular surface of waveguide with blends of PS and PMMA

Xuanke Zhao, Zhaoxin Wu, Shuya Ning, Shixiong Liang, Dawei Wang, and Xun Hou  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 16126-16131 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2546 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Lasing from a planar waveguide with the blend of Polystyrene(PS): Poly-methylmethacrylate(PMMA) doped with tris(8 -hydroxyquinolinato)aluminum(Alq3) and 4-(dicyanomethylene)-2-tert- butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran(DCJTB) was investigated. Due to phase separation of the blend of PS:PMMA during the solvent evaporation process, a waveguide with granular surface was obtained, which has 2D island-like nanostructures with diameters ranging between 200 and 400 nm and heights at about 25 nm. Pumped by a YAG laser with wavelength of 355nm, a significant random lasing was observed. Compared to the amplified spontaneous radiation (ASE) of planar waveguides with only PMMA or PS doped with Alq3:DCJTB prepared under the same conditions, the lasing threshold of the former is decreased by about 5 times, and the full width at half maximum (FWHM) is reduced to 1.7nm from 12~15 nm. Our experiments show a promising method to achieve lower threshold for organic lasers.

© 2011 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.7390) Optical devices : Waveguides, planar
(290.4210) Scattering : Multiple scattering

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 6, 2011
Revised Manuscript: July 9, 2011
Manuscript Accepted: July 20, 2011
Published: August 8, 2011

Xuanke Zhao, Zhaoxin Wu, Shuya Ning, Shixiong Liang, Dawei Wang, and Xun Hou, "Random lasing from granular surface of waveguide with blends of PS and PMMA," Opt. Express 19, 16126-16131 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994). [CrossRef]
  2. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999). [CrossRef]
  3. D. S. Wiersma, “The smallest random laser,” Nature 406(6792), 132–135 (2000). [CrossRef] [PubMed]
  4. V. M. Apalkov, M. E. Raith, and B. Shapiro, “Random resonators and prelocalized modes in disordered dielectric films,” Phys. Rev. Lett. 89(1), 016802 (2002). [CrossRef] [PubMed]
  5. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008). [CrossRef]
  6. Q. Song, S. Xiao, Z. Xu, V. M. Shalaev, and Y. L. Kim, “Random laser spectroscopy for nanoscale perturbation sensing,” Opt. Lett. 35(15), 2624–2626 (2010). [CrossRef] [PubMed]
  7. V. M. Markushev, N. E. Ter-Gabrielyan, M. Briskina Ch, V. R. Belan, and V. F. Z. Sov, “Stimulated emission kinetics of neodymium powder lasers,” J. Quantum Electron 20(7), 773–777 (1990). [CrossRef]
  8. D. Anglos, A. Stassinopoulos, R. N. Das, G. Zacharakis, M. Psyllaki, R. Jakubiak, R. A. Vaia, E. P. Giannelis, and S. H. Anastasiadis, “Random laser action in organic–inorganic nanocomposites,” J. Opt. Soc. Am. B 21(1), 208–213 (2004). [CrossRef]
  9. T. Takahashi, T. Nakamura, and S. Adachi, “Blue-light-emitting ZnSe random laser,” Opt. Lett. 34(24), 3923–3925 (2009). [CrossRef] [PubMed]
  10. G. Zacharakis, N. A. Papadogiannis, and T. G. Papazoglou, “Random lasing following two-photon excitation of highly scattering gain media,” Appl. Phys. Lett. 81(14), 2511–2513 (2002). [CrossRef]
  11. E. Pecoraro, S. García-Revilla, R. A. S. Ferreira, R. Balda, L. D. Carlos, and J. Fernández, “Real time random laser properties of Rhodamine-doped di-ureasil hybrids,” Opt. Express 18(7), 7470–7478 (2010). [CrossRef] [PubMed]
  12. S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. A. Zakhidov, and R. H. Baughman, “Stimulated emission in high gain organic media,” Phys. Rev. B 59(8), R5284–R5287 (1999). [CrossRef]
  13. R. C. Polson, A. Chipoline, and Z. V. Vardeny, “Random lasing in π-conjugated films and infiltrated opals,” Adv. Mater. (Deerfield Beach Fla.) 13(10), 760–764 (2001). [CrossRef]
  14. R. M. Balachandran, D. P. Pacheco, and N. M. Lawandy, “Laser action in polymeric gain media containing scattering particles,” Appl. Opt. 35(4), 640–643 (1996). [CrossRef] [PubMed]
  15. A. Tulek, R. C. Polson, and Z. V. Vardeny, “Naturally occurring resonators in random lasing of π-conjugated polymer films,” Nat. Phys. 6(4), 303–310 (2010). [CrossRef]
  16. H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86(20), 4524–4527 (2001). [CrossRef] [PubMed]
  17. M. N. Shkunov, M. C. DeLong, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Photonic versus random lasing in opal single crystals,” Synth. Met. 116(1-3), 485–491 (2001). [CrossRef]
  18. D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001). [CrossRef] [PubMed]
  19. C. Bouvy, E. Chelnokov, R. Zhao, W. Marine, R. Sporken, and B.-L. Su, “Random laser action of ZnO@mesoporous silicas,” Nano.Technol. 19, 105710 (2008).
  20. C.-R. Lee, S.-H. Lin, C.-H. Guo, S.-H. Chang, T.-S. Mo, and S.-C. Chu, “All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets,” Opt. Express 18(3), 2406–2412 (2010). [CrossRef] [PubMed]
  21. R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71(4), 045205 (2005). [CrossRef]
  22. Q. Song, L. Liu, L. Xu, Y. Wu, and Z. Wang, “Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity,” Opt. Lett. 34(3), 298–300 (2009). [CrossRef] [PubMed]
  23. Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, I. M. Watson, E. Gu, N. Laurand, and M. D. Dawson, “Colloidal quantum dot random laser,” Opt. Express 19(4), 2996–3003 (2011). [CrossRef] [PubMed]
  24. K. Tanaka, A. Takahara, and T. Kajiyama, “Film Thickness Dependence of the Surface Structure of Immiscible Polystyrene/Poly(methyl methacrylate) Blends,” Macromolecules 29(9), 3232–3239 (1996). [CrossRef]
  25. W. L. Barnes and P. Andrew, “Energy transfer under control,” Nature 400(6744), 505–506 (1999). [CrossRef]
  26. M. Koschorreck, R. Gehlhaar, V. G. Lyssenko, M. Swoboda, M. Hoffmann, and K. Leo, “Dynamics of a high-Q vertical-cavity organic laser,” Appl. Phys. Lett. 87(18), 181108 (2005). [CrossRef]
  27. C. Ton-That, A. G. Shard, R. Daley, and R. H. Bradley, “Effects of Annealing on the Surface Composition and Morphology of PS/PMMA Blend,” Macromolecules 33(22), 8453–8459 (2000). [CrossRef]
  28. L. Fang, M. Wei, C. Barry, and J. Mead, “Effect of Spin Speed and Solution Concentration on the Directed Assembly of Polymer Blends,” Macromolecules 43(23), 9747–9753 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited