OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16139–16153

The electromagnetics of light transmission through subwavelength slits in metallic films

John Weiner  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 16139-16153 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1560 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By numerically calculating the relevant electromagnetic fields and charge current densities, we show how local charges and currents near subwavelength structures govern light transmission through subwavelength apertures in a real metal film. The illumination of a single aperture generates surface waves; and in the case of slits, generates them with high efficiency and with a phase close to –π with respect to a reference standing wave established at the metal film front facet. This phase shift is due to the direction of induced charge currents running within the slit walls. The surface waves on the entrance facet interfere with the standing wave. This interference controls the profile of the transmission through slit pairs as a function of their separation. We compare the calculated transmission profile for a two-slit array to simple interference models and measurements [Phys. Rev. B 77(11), 115411 (2008)].

© 2011 OSA

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Optics at Surfaces

Original Manuscript: June 7, 2011
Revised Manuscript: July 15, 2011
Manuscript Accepted: July 17, 2011
Published: August 9, 2011

John Weiner, "The electromagnetics of light transmission through subwavelength slits in metallic films," Opt. Express 19, 16139-16153 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77(11), 115411 (2008). [CrossRef]
  2. J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72(6), 064401 (2009). [CrossRef]
  3. M. W. Kim, T. T. Kim, J. E. Kim, and H. Y. Park, “Surface plasmon polariton resonance and transmission enhancement of light through subwavelength slit arrays in metallic films,” Opt. Express 17(15), 12315–12322 (2009). [CrossRef] [PubMed]
  4. I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79(16), 161406 (2009). [CrossRef]
  5. S. Collin, C. Sauvan, C. Billaudeau, F. Pardo, J. C. Rodier, J. L. Pelouard, and P. Lalanne, “Surface modes on nanostructured metallic surfaces,” Phys. Rev. B 79(16), 165405 (2009). [CrossRef]
  6. J. S. White, G. Veronis, Z. F. Yu, E. S. Barnard, A. Chandran, S. H. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009). [CrossRef] [PubMed]
  7. P. B. Catrysse and S. H. Fan, “Propagating plasmonic mode in nanoscale apertures and its implications for extraordinary transmission,” J. Nanophoton. 2, 021790 (2008). [CrossRef]
  8. R. Marques, F. Mesa, L. Jelinek, and F. Medina, “Analytical theory of extraordinary transmission through metallic diffraction screens perforated by small holes,” Opt. Express 17(7), 5571–5579 (2009). [CrossRef] [PubMed]
  9. J. Fiala and I. Richter, “Interaction of light with subwavelength apertures: a comparison of approximate and rigorous approaches,” Opt. Quantum Electron. 41(5), 409–427 (2009). [CrossRef]
  10. V. E. Babicheva and Y. E. Lozovik, “Role of propagating slit mode in enhanced transmission through slit arrays in a metallic films,” Opt. Quantum Electron. 41(4), 299–313 (2009). [CrossRef]
  11. X. F. Li and S. F. Yu, “Long-wavelength optical transmission of extremely narrow slits via hybrid surface-plasmon and Fabry-Perot modes,” J. Appl. Phys. 108(1), 013302 (2010). [CrossRef]
  12. R. L. Chern and W. T. Hong, “Transmission resonances and antiresonances in metallic arrays of compound subwavelength holes,” J. Opt. 12(6), 065101 (2010). [CrossRef]
  13. Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photonics Nanostruct. 8(2), 94–101 (2010). [CrossRef]
  14. M. Diwekar, S. Blair, and M. Davis, “Increased light gathering capacity of sub-wavelength conical metallic apertures,” J. Nanophoton. 4, 043504 (2010). [CrossRef]
  15. B. Wang and P. Lalanne, “Surface plasmon polaritons locally excited on the ridges of metallic gratings,” J. Opt. Soc. Am. A 27(6), 1432–1441 (2010). [CrossRef]
  16. P. Banzer, J. Kindler, S. Quabis, U. Peschel, and G. Leuchs, “Extraordinary transmission through a single coaxial aperture in a thin metal film,” Opt. Express 18(10), 10896–10904 (2010). [CrossRef] [PubMed]
  17. Y. L. Hua, J. X. Fu, J. Y. Li, Z. Y. Li, and H. F. Yang, “Experimental studies of extraordinary light transmission through periodic arrays of subwavelength square and rectangular holes in metal films,” Chin. Phys. B 19(4), 047309 (2010). [CrossRef]
  18. Y. S. Zhou, B. Y. Gu, H. Y. Wang, and L. M. Zhao, “Enhancement of the extraordinary optical transmission in a subwavelength metal slit dressed by a metal grating,” Phys. Rev. A 81(3), 035803 (2010). [CrossRef]
  19. V. Delgado, R. Marques, and L. Jelinek, “Analytical theory of extraordinary optical transmission through realistic metallic screens,” Opt. Express 18(7), 6506–6515 (2010). [CrossRef] [PubMed]
  20. R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010). [CrossRef]
  21. M. A. Vincenti, D. de Ceglia, M. Buncick, N. Akozbek, M. J. Bloemer, and M. Scalora, “Extraordinary transmission in the ultraviolet range from subwavelength slits on semiconductors,” J. Appl. Phys. 107(5), 053101 (2010). [CrossRef]
  22. X. R. Huang and R. W. Peng, “General mechanism involved in subwavelength optics of conducting microstructures: charge-oscillation-induced light emission and interference,” J. Opt. Soc. Am. A 27(4), 718–729 (2010). [CrossRef]
  23. M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009). [CrossRef]
  24. P. B. Catrysse and S. H. Fan, “Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94(23), 231111 (2009). [CrossRef]
  25. F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, “Extraordinary transmission beyond the cut-off through sub-lambda annular aperture arrays,” Opt. Commun. 282(7), 1463–1466 (2009). [CrossRef]
  26. E. Feigenbaum and H. A. Atwater, “Resonant guided wave networks,” Phys. Rev. Lett. 104(14), 147402 (2010). [CrossRef] [PubMed]
  27. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010). [CrossRef]
  28. E. Popov and M. Neviere, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17(10), 1773–1784 (2000). [CrossRef]
  29. P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings–application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982). [CrossRef]
  30. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999). [CrossRef]
  31. E. Palik and G. Ghosh, eds., The Electronic Handbook of Optical Constants of Solids (Academic, 1999).
  32. S.-H. Chang, S. Gray, and G. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13, 3150–3165 (2005). [CrossRef] [PubMed]
  33. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]
  34. M. Born and E. Wolf, Principles of Optics , 6th ed. (Pergamon Press, 1993).
  35. J. Weiner and F. D. Nunes, “High-frequency response of subwavelength-structured metals in the petahertz domain,” Opt. Express 16(26), 21256–21270 (2008). [CrossRef] [PubMed]
  36. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  37. G. Lévêque, O. J. F. Martin, and J. Weiner, “Transient behavior of surface plasmon polaritons scattered at a subwavelength groove,” Phys. Rev. B 76(15), 155418 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3760 KB)     
» Media 2: AVI (3017 KB)     
» Media 3: AVI (3404 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited