OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16182–16194

Dipole emitters in fiber: interface effects, collection efficiency and optimization

Matthew R. Henderson, Shahraam Afshar V., Andrew D. Greentree, and Tanya M. Monro  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 16182-16194 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (798 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Single photon emitters coupled to optical fibers are becoming important as sources of non-classical light and nano-scale sensors. At present it is not possible to efficiently interface single photon emitters with the optical fiber platform, and there are particular challenges associated with the need to ensure highly efficient collection and delivery of emitted photons. To model single particle emission, we have considered the coupling of a dipole to an optical fiber mode as a function of orientation and position with respect to the core-cladding interface. Our model shows that it is possible to significantly enhance the collection efficiency into the guided modes as a result of modifications to the dipole emission pattern and power resulting from the surrounding fiber environment. For certain geometries the fiber-dipole coupling can result in a factor of 2.6 increase in the power emitted by the dipole.

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(270.0270) Quantum optics : Quantum optics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 23, 2011
Revised Manuscript: July 11, 2011
Manuscript Accepted: July 13, 2011
Published: August 9, 2011

Matthew R. Henderson, Shahraam Afshar V., Andrew D. Greentree, and Tanya M. Monro, "Dipole emitters in fiber: interface effects, collection efficiency and optimization," Opt. Express 19, 16182-16194 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond based single photon emitters,” Rep. Prog. Phys. 74, 076501 (2011). [CrossRef]
  2. S. Afshar V., S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15, 17891–17901 (2007). [CrossRef]
  3. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  4. W. Żakowicz and M. Janowicz, “Spontaneous emission in the presence of a dielectric cylinder,” Phys. Rev. A 62, 013820 (2000). [CrossRef]
  5. T. Søndergaard and B. Tromborg, “General theory for spontaneous emission in active dielectric microstructures: example of a fiber amplifier,” Phys. Rev. A 64, 033812 (2001). [CrossRef]
  6. J.-P. Hermier, M. Dahan, X. Brokmann, and L. Coolen, “Emission properties of single CdSe/ZnS quantum dots close to a dielectric interface,” Chem. Phys. 318, 91–98 (2005). [CrossRef]
  7. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  8. I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005). [CrossRef]
  9. K.-M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, and R. G. Beausoleil, “Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities,” New J. Phys. 13, 055023 (2011). [CrossRef]
  10. D. D. Awschalom, R. Epstein, and R. Hanson, “The diamond age of spintronics,” Sci. Am. 297, 84–91 (2007). [CrossRef] [PubMed]
  11. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction — part I: basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998). [CrossRef]
  12. M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V., J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. 23, 2806–2810 (2011). [CrossRef] [PubMed]
  13. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010). [CrossRef] [PubMed]
  14. A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011). [CrossRef]
  15. P. Siyushev, F. Kaiser, V. Jacques, I. Gerhardt, S. Bischof, H. Fedder, J. Dodson, M. Markham, D. Twitchen, F. Jelezko, and J. Wrachtrup, “Monolithic diamond optics for single photon detection,” Appl. Phys. Lett. 97, 241902 (2010). [CrossRef]
  16. T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultra-bright and efficient single photon generation based on n-v centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13, 055017 (2011). [CrossRef]
  17. L. Marseglia, J. P. Hadden, A. C. Stanley-Clarke, J. P. Harrison, B. Patton, Y.-L. D. Ho, B. Naydenov, F. Jelezko, J. Meijer, P. R. Dolan, J. M. Smith, J. G. Rarity, and J. L. O’Brien, “Nano-fabricated solid immersion lenses registered to single emitters in diamond,” Appl. Phys. Lett. 98, 189902 (2011).
  18. P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express 17, 8081–8097 (2009). [CrossRef] [PubMed]
  19. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010). [CrossRef] [PubMed]
  20. Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006). [CrossRef] [PubMed]
  21. J. Rabeau, S. Huntington, A. Greentree, and S. Prawer, “Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding,” Appl. Phys. Lett. 86, 134104 (2005). [CrossRef]
  22. S. Kuhn, C. Hettich, C. Schmitt, J. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6 (2001). [CrossRef] [PubMed]
  23. E. Ampem-Lassen, D. A. Simpson, B. C. Gibson, S. Trpkovski, F. M. Hossain, S. T. Huntington, K. Ganesan, L. C. Hollenberg, and S. Prawer, “Nano-manipulation of diamond-based single photon sources,” Opt. Express 17, 11287–11293 (2009). [CrossRef] [PubMed]
  24. T. Schroder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett. 11, 198–202 (2011). [CrossRef]
  25. I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011). [CrossRef]
  26. M. R. Oermann, H. Ebendorff-Heidepriem, Y. Li, T.-C. Foo, and T. M. Monro, “Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: erbium doped lanthanum-tellurite glass,” Opt. Express 17, 15578–15584 (2009). [CrossRef] [PubMed]
  27. T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16, 343–356 (2010). [CrossRef]
  28. A. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).
  29. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited