OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16259–16265

Experimental demonstration of microring-based optical pulse train generator

Shang Wang and Hui Wu  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 16259-16265 (2011)
http://dx.doi.org/10.1364/OE.19.016259


View Full Text Article

Enhanced HTML    Acrobat PDF (1376 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently, we proposed the concept of a microring-based optical pulse train generator, which uses a series of microrings coupled to a waveguide and time-interleaves a trigger pulse propagating on this waveguide to generate an optical pulse train. When each ring is electrically modulated, this electronic-photonic integrated circuit (EPIC) can be used for optical arbitrary waveform generation (OAWG) and ultrafast electro-optic (EO) modulation. This paper presents the proof-of-concept experimental demonstration of this technique with two four-stage chip prototypes fabricated on silicon-on-insulator (SOI) substrate. Device fabrication and testing of the chip prototypes are presented. The measurement results show that from a 20-ps-wide input trigger pulse, two circuits generate four sequential pulses at the output with a constant stage delay of 55 ps and 30 ps respectively, which translate into pulse repetition rates of 18 GHz and 33 GHz.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits
(320.7080) Ultrafast optics : Ultrafast devices

ToC Category:
Integrated Optics

History
Original Manuscript: June 28, 2011
Revised Manuscript: July 22, 2011
Manuscript Accepted: July 25, 2011
Published: August 9, 2011

Citation
Shang Wang and Hui Wu, "Experimental demonstration of microring-based optical pulse train generator," Opt. Express 19, 16259-16265 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-16259


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro. 29, 8–21 (2009). [CrossRef]
  2. F. X. Kärtner, R. Amatya, M. Araghchini, J. Birge, H. Byun, J. Chen, M. Dahlem, N. A. DiLello, F. Gan, C. W. Holzwarth, J. L. Hoyt, E. P. Ippen, A. Khilo, J. Kim, M. Kim, A. Motamedi, J. S. Orcutt, M. Park, M. Perrott, M. A. Popović, R. J. Ram, H. I. Smith, G. R. Zhou, S. J. Spector, T. M. Lyszczarz, M. W. Geis, D. M. Lennon, J. U. Yoon, M. E. Grein, and R. T. Schulein, “Photonic analog-to-digital conversion with electronic-photonic integrated circuits,” in Silicon Photonics III, J. A. Kubby and G. T. Reed, eds. Proc. SPIE 6898, 689806 (2008). [CrossRef]
  3. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005). [CrossRef] [PubMed]
  4. D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi, M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn, “Corona: System implications of emerging nanophotonic technology,” in Proceedings of the 35th Annual International Symposium on Computer Architecture (IEEE Computer Society, Washington, DC, USA, 2008), ISCA ’08, pp. 153–164.
  5. S. Wang, B. Ciftcioglu, and H. Wu, “Microring-based optical pulse-train generator,” Opt. Express 18, 19314–19323 (2010). [CrossRef] [PubMed]
  6. M. Y. Sander, H. Byun, M. S. Dahlem, D. Chao, A. R. Motamedi, G. Petrich, L. Kolodziejski, L.S. Frolov, H. Hao, J. Shmulovich, E. P. Ippen, and F. X. Kärtner, “10 GHz waveguide interleaved femtosecond pulse train,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2011), p. CThY6.
  7. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010). [CrossRef]
  8. E. Ippen, A. Benedick, J. Birge, H. Byun, L.-J. Chen, G. Chang, D. Chao, J. Morse, A. Motamedi, M. Sander, G. Petrich, L. Kolodziejski, and F. Kärtner, “Optical arbitrary waveform generation,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2010), p. JThC4.
  9. O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” N. J. Phys. 6, 183 (2004). [CrossRef]
  10. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001). [CrossRef]
  11. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003). [CrossRef] [PubMed]
  12. M. Popovic, C. Manolatou, and M. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14, 1208–1222 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited