OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16266–16272

Large enhancement of photocurrent gain based on the composite of a single n-type SnO2 nanowire and p-type NiO nanoparticles

Meng-Lin Lu, Tzu-Yun Lin, Tong-Min Weng, and Yang-Fang Chen  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 16266-16272 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1461 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The high sensitivity of photodetector in the UV range based on the composite consisting of a single SnO2 nanowire and NiO nanoparticles has been demonstrated. The underlying mechanism is attributed to the formation of p-NiO and n-SnO2 heterojunction on the nanowire surface. The enhanced space charge region owing to the existence of p-n heterojunction increases the surface electric field, which will improve the separation of photogenerated electrons and holes, and the photoresponse gain will be greatly enhanced. This work shows a new approach that by decorating suitable p-type nanoparticles on n-type nanowires, the photoresponse gain can be enhanced drastically. Our result should be useful for creating novel high efficiency photodetectors.

© 2011 OSA

ToC Category:

Original Manuscript: July 1, 2011
Revised Manuscript: August 3, 2011
Manuscript Accepted: August 4, 2011
Published: August 9, 2011

Meng-Lin Lu, Tzu-Yun Lin, Tong-Min Weng, and Yang-Fang Chen, "Large enhancement of photocurrent gain based on the composite of a single n-type SnO2 nanowire and p-type NiO nanoparticles," Opt. Express 19, 16266-16272 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003). [CrossRef]
  2. X. H. Kong and Y. D. Li, “High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature,” Sens. Actuators B Chem. 105(2), 449–453 (2005). [CrossRef]
  3. A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.) 15(12), 997–1000 (2003). [CrossRef]
  4. Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, “Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity,” Nanotechnology 19(9), 095508 (2008). [CrossRef] [PubMed]
  5. S. H. Lee, G. Jo, W. Park, S. Lee, Y.-S. Kim, B. K. Cho, T. Lee, and W. B. Kim, “Diameter-engineered SnO2 nanowires over contact-printed gold nanodots using size-controlled carbon nanopost array stamps,” ACS Nano 4(4), 1829–1836 (2010). [CrossRef] [PubMed]
  6. C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, “High photocurrent gain in SnO2 nanowires,” Appl. Phys. Lett. 93(11), 112115 (2008). [CrossRef]
  7. H. J. Snaith and C. Ducati, “SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency,” Nano Lett. 10(4), 1259–1265 (2010). [CrossRef] [PubMed]
  8. F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Härle, “Mechanisms of recombination in GaN photodetectors,” Appl. Phys. Lett. 69(9), 1202 (1996). [CrossRef]
  9. E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. Sánchez-García, E. Calleja, B. Beaumont, and P. Gibart, “Photoconductor gain mechanisms in GaN ultraviolet detectors,” Appl. Phys. Lett. 71(7), 870 (1997). [CrossRef]
  10. A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles,” Nano Lett. 5(4), 667–673 (2005). [CrossRef] [PubMed]
  11. X. H. Chen and M. Moskovits, “Observing catalysis through the agency of the participating electrons: surface-chemistry-induced current changes in a tin oxide nanowire decorated with silver,” Nano Lett. 7(3), 807–812 (2007). [CrossRef] [PubMed]
  12. C. H. Lin, T. T. Chen, and Y. F. Chen, “Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration,” Opt. Express 16(21), 16916–16922 (2008). [CrossRef] [PubMed]
  13. N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, and M. Pärs, “Raman scattering in nanosized nickel oxide NiO,” J. Phys.: Conf. Ser. 93, 012039 (2007). [CrossRef]
  14. R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, “Ultrahigh photocurrent gain in m-axial GaN nanowires,” Appl. Phys. Lett. 91(22), 223106 (2007). [CrossRef]
  15. X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, “Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: direct evidence for the origin of the blue luminescence and the role of surface states,” Appl. Phys. Lett. 89(21), 213109 (2006). [CrossRef]
  16. J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, “Photoconductive gain modelling of GaN photodetectors,” Semicond. Sci. Technol. 13(6), 563–568 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited