OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16273–16290

Exploration of in-fiber nanostructures from capillary instability

D. S. Deng, J.-C. Nave, X. Liang, S. G. Johnson, and Y. Fink  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 16273-16290 (2011)
http://dx.doi.org/10.1364/OE.19.016273


View Full Text Article

Enhanced HTML    Acrobat PDF (1165 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new class of multi-material fiber that incorporates micrometer-thickness concentric-cylindrical sheets of glass into polymer matrix has emerged. The ultimate lower limit of feature size and recent observation of interesting instability phenomenon in fiber system motivate us to examine fluid instabilities during the complicated thermal drawing fabrication processing. In this paper, from the perspective of a single instability mechanism, classical Plateau-Rayleigh instabilities in the form of radial fluctuation, we explore the stability of various microstructures (such as shells and filaments) in our composite fibers. The attained uniform structures are consistent with theoretical analysis. Furthermore, a viscous materials map is established from calculations and agrees well with various identified materials. These results not only shed insights into other forms of fluid instabilities, but also provide guidance to achieve more diverse nanostructures (such as filaments, wires, and particles) in the microstructured fibers.

© 2011 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2290) Fiber optics and optical communications : Fiber materials
(230.1480) Optical devices : Bragg reflectors
(230.4000) Optical devices : Microstructure fabrication
(060.4005) Fiber optics and optical communications : Microstructured fibers
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 31, 2011
Revised Manuscript: July 25, 2011
Manuscript Accepted: August 1, 2011
Published: August 10, 2011

Citation
D. S. Deng, J.-C. Nave, X. Liang, S. G. Johnson, and Y. Fink, "Exploration of in-fiber nanostructures from capillary instability," Opt. Express 19, 16273-16290 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-16273


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Eggers, “Nonlinear dynamics and breakup of free-surface flows,” Rev. Mod. Phys. 69, 865–929 (1997). [CrossRef]
  2. P. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena (Springer, 2002).
  3. J. B. Fournier and A. M. Cazabat, “Tears of wine,” Europhys. Lett. 20, 517–522 (1992). [CrossRef]
  4. J. Plateau, Statique Expérimentale et Theorique des Liquides Soumis aux Seules Force Molécularies , (Gauthier Villars, 1873), vol. 2.
  5. L. Rayleigh, “On the capillary phenomena of jets,” Proc. Roy. Soc. London 29, 71–97 (1879). [CrossRef]
  6. L. Rayleigh, “On the instability of a cylinder of viscous liquid under capillary force,” Philos. Mag. 34, 145–154 (1892).
  7. S. Tomotika, “On the instability of a cylinderical thread of a viscous liquid surrounded by another viscous fluid,” Proc. Roy. Soc. London. 150, 322–337 (1935). [CrossRef]
  8. H. A. Stone and M. P. Brenner, “Note on the capillary thread instability for fluids of equal viscosities,” J. Fluid. Mech. 318, 373–374 (1996). [CrossRef]
  9. X. D. Shi, M. P. Brenner, and S. R. Nagel, “A cascade of structure in a drop falling from a faucet,” Science 265, 219–222 (1994). [CrossRef] [PubMed]
  10. A. M. Ganan-Calvo, R. Gonzalez-Prieto, P. Riesco-Chueca, M. A. Herrada, and M. Flores-Mosquera, “Focusing capillary jets close to the continuum limit,” Nat. Phys. 3, 737–742 (2007). [CrossRef]
  11. M. Moseler and U. Landman, “Formation, stability, and breakup of nanojets,” Science 289, 1165–1169 (2000). [CrossRef] [PubMed]
  12. M. E. Toimil-Molares, A. G. Balogh, T. W. Cornelius, R. Neumann, and C. Trautmann, “Fragmentation of nanowires driven by Rayleigh instability,” Appl. Phys. Lett. 85, 5337–5339 (2004). [CrossRef]
  13. S. Karim, M. E. Toimil-Molares, A. G. Balogh, W. Ensinger, T. W. Cornelius, E. U. Khan, and R. Neumann, “Morphological evolution of Au nanowires controlled by Rayleigh instability,” Nanotechnology 17, 5954–5959 (2006). [CrossRef]
  14. J. T. Chen, M. F. Zhang, and T. P. Russell, “Instabilities in nanoporous media,” Nano. Lett. 7, 183–187 (2007). [CrossRef] [PubMed]
  15. Y. Qin, S.M. Lee, A. Pan, U. Gosele, and M. Knez, “Rayleigh-instability-induced metal nanoparticle chains encapsulated in nanotubes produced by atomic layer deposition,” Nano. Lett. 8, 114–118 (2008). [CrossRef]
  16. H. A. Stone, A.D. Stroock, and A. Ajdari, “Engineering flows in small devices: Microfluidics toward a lab-on-a-chip,” Annu. Rev. Fluid. Mech. 36, 381–411 (2004). [CrossRef]
  17. T. M. Squires and S. R. Quake, “Microfluidics: fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77, 977–1026 (2005). [CrossRef]
  18. R. Huang and Z. Suo, “Wrinkling of a compressed elastic film on a viscous layer,” J. Appl. Phys. 91, 1135–1142 (2002). [CrossRef]
  19. E. Cerda, K. Ravi-Chandar, and L. Mahadevan, “Thin films—wrinkling of an elastic sheet under tension,” Nature 419, 579–580 (2002). [CrossRef] [PubMed]
  20. E. Cerda and L. Mahadevan, “Geometry and physics of wrinkling,” Phys. Rev. Lett. 90, 074302 (2003). [CrossRef] [PubMed]
  21. D. B. Keck, R. D. Maurer, and P. C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett. 22, 307–309 (1973). [CrossRef]
  22. G. P. Agrawal, Fiber-Optic Communication Systems , 3rd ed. (Wiley-Interscience, 2002). [CrossRef]
  23. S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296, 510–513 (2002). [CrossRef] [PubMed]
  24. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002). [CrossRef] [PubMed]
  25. M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature , 431, 826–829 (2004). [CrossRef] [PubMed]
  26. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007). [CrossRef] [PubMed]
  27. M. Yaman, T. Khudiyev, E. Ozgur, M. Kanik, O. Aktas, E. O. Ozgur, H. Deniz, E. Korkut, and M. Bayindir, “Arrays of indefinitely long uniform nanowires and nanotubes,” Nat. Mater. 10, 494–501 (2011). [CrossRef] [PubMed]
  28. A. Mazhorova, J. F. Gu, A. Dupuis, M. Peccianti, O. Tsuneyuki, R. Morandotti, H. Minamide, M. Tang, Y. Wang, H. Ito, and M. Skorobogatiy, “Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation,” Opt. Express 18, 24632–24647 (2010). [CrossRef] [PubMed]
  29. J. N. Winn, Y. Fink, S. H. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 15731575 (1998). [CrossRef]
  30. D. S. Deng, N. Orf, A. Abouraddy, A. Stolyarov, J. Joannopoulos, H. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano. Lett. 8, 4265–4269 (2008). [CrossRef]
  31. D. S. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96, 23102 (2010). [CrossRef]
  32. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability , (Oxford University Press, 1961).
  33. J. Eggers and E. Villermaux, “Physics of liquid jets,” Rep. Prog. Phys. 71, 36601 (2008). [CrossRef]
  34. X. Liang, D. S. Deng, J.-C. Nave, and S. G. Johnson, “Linear stability analysis of capillary instabilities for concentric cylindrical shells,” J. Fluid. Mech. (in press).
  35. A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: Capillary drawing,” J. Lightwave. Technol. 19, 1924–1931 (2001). [CrossRef]
  36. S. C. Xue, M. C. J. Large, G. W. Barton, R. I. Tanner, L. Poladian, and R. Lwin, “Role of material properties and drawing conditions in the fabrication of microstructured optical fibers,” J. Lightwave Technol. 24, 853–860 (2006). [CrossRef]
  37. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005). [CrossRef] [PubMed]
  38. I. M. Griffiths and P. D. Howell, “Mathematical modelling of non-axisymmetric capillary tube drawing,” J. Fluid Mech. 605, 181–206 (2008). [CrossRef]
  39. G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, 2000).
  40. S. D. Hart and Y. Fink, “Interfacial energy and materials selection criteria in composite microstructured optical fiber fabrication,” Mat. Res. Soc. Symp. Proc. 797, W.7.5.1–W.7.5.7 (2004).
  41. S. D. Hart, Multilayer composite photonic bandgap fibers , PhD thesis, MIT (2004).
  42. V. F. Dobrescu and C. Radovici, “Temperature dependence of melt viscosity of polymers,” Polym. Bull. 10, 134–140 (1983). [CrossRef]
  43. S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9, 643–648 (2010). [CrossRef] [PubMed]
  44. M. F. Culpin, “The viscosity of liquid indium and liquid tin,” Proc. Phys. Soc. B70, 1069–1078 (1957).
  45. R. Scardovelli and S. Zaleski, “Direct numerical simulation of free-surface and interfacial flow,” Annu. Rev. Fluid Mech. 31, 567–603 (1999). [CrossRef]
  46. S. Osher and J. A. Sethian, “Front propagating with curvature-dependent speed - alogrithms based on Hamilton-Jacobi formulations,” J. Comput. Phys. 79, 12–49 (1988). [CrossRef]
  47. S. Osher and R. P. Fedkiw, “Level set methods: An overview and some recent results,” J. Comput. Phys. 169, 463–502 (2001). [CrossRef]
  48. J. A. Sethian and P. Smereka, “Level set methods for fluid interfaces,” Annu. Rev. Fluid Mech. 35, 341–372 (2003). [CrossRef]
  49. E. Olsson and G. Kreiss, “A conservative level set method for two phase flow,” J. Comput. Phys. 210, 225–246 (2005). [CrossRef]
  50. P. G. Debenedetti and F. H. Stillinger, “Supercooled liquids and the glass transition,” Nature 410, 259–267 (2001). [CrossRef] [PubMed]
  51. A. S. Tverjanovich, “Temperature dependence of the viscosity of chalcogenide glass-forming melts,” Glass Phys. Chem. 29, 532–536 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited