OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16309–16316

Experimental demonstration of decoherence suppression via quantum measurement reversal

Jong-Chan Lee, Youn-Chang Jeong, Yong-Su Kim, and Yoon-Ho Kim  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 16309-16316 (2011)
http://dx.doi.org/10.1364/OE.19.016309


View Full Text Article

Enhanced HTML    Acrobat PDF (1027 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Taming decoherence is essential in realizing quantum computation and quantum communication. Here we experimentally demonstrate that decoherence due to amplitude damping can be suppressed by exploiting quantum measurement reversal in which a weak measurement and the reversing measurement are introduced before and after the decoherence channel, respectively. We have also investigated the trade-off relation between the degree of decoherence suppression and the channel transmittance.

© 2011 OSA

OCIS Codes
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: June 8, 2011
Revised Manuscript: July 26, 2011
Manuscript Accepted: July 31, 2011
Published: August 10, 2011

Citation
Jong-Chan Lee, Youn-Chang Jeong, Yong-Su Kim, and Yoon-Ho Kim, "Experimental demonstration of decoherence suppression via quantum measurement reversal," Opt. Express 19, 16309-16316 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-16309


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
  2. L. Aolita, R. Chaves, D. Cavalcanti, A. Acín, and L. Davidovich, “Scaling laws for the decay of multiqubit entanglement,” Phys. Rev. Lett. 100, 080501 (2008). [CrossRef] [PubMed]
  3. M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. S. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007). [CrossRef] [PubMed]
  4. P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493–R2496 (1995). [CrossRef] [PubMed]
  5. A. M. Steane, “Error correcting codes in quantum theory,” Phys. Rev. Lett. 77, 793–797 (1996). [CrossRef] [PubMed]
  6. D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594–2597 (1998). [CrossRef]
  7. P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science 290, 498–501 (2000). [CrossRef] [PubMed]
  8. L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417–2421 (1999). [CrossRef]
  9. J. R. West, D. A. Lidar, B. H. Fong, and M. F. Gyure, “High-fidelity quantum gates via dynamical decoupling,” Phys. Rev. Lett. 105, 230503 (2010). [CrossRef]
  10. A.N. Korotkov and K. Keane, “Decoherence suppression by quantum measurement reversal,” Phys. Rev. A 81, 040103(R) (2010). [CrossRef]
  11. M. Koashi and M. Ueda, “Reversing measurement and probabilistic quantum error correction,” Phys. Rev. Lett. 82, 2598–2601 (1999). [CrossRef]
  12. Y.-S. Kim, Y.-W. Cho, Y.-S. Ra, and Y.-H. Kim, “Reversing the weak quantum measurement for a photonic qubit,” Opt. Express 17, 11978–11985 (2009). [CrossRef] [PubMed]
  13. A. N. Korotkov and A. N. Jordan, “Undoing a weak quantum measurement of a solid-state qubit,” Phys. Rev. Lett. 97, 166805 (2006). [CrossRef] [PubMed]
  14. N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis, and A. N. Korotkov, “Reversal of the weak measurement of a quantum state in a superconducting phase qubit,” Phys. Rev. Lett. 101, 200401 (2008). [CrossRef] [PubMed]
  15. C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986). [CrossRef] [PubMed]
  16. Y.-S. Kim, H.-T. Lim, Y.-S. Ra, and Y.-H. Kim, “Experimental verification of the commutation relation for Pauli spin operators using single-photon quantum interference,” Phys. Lett. A 374, 4393–4396 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited