OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16317–16323

Rogue-wave-like statistics in ultrafast white-light continuum generation in sapphire

D. Majus, V. Jukna, E. Pileckis, G. Valiulis, and A. Dubietis  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 16317-16323 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (920 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally study the statistics of the white-light continuum generated by focusing of 130 fs, 800 nm pulses in a sapphire plate and show that the statistical distributions of the spectral intensity of the blue-shifted continuum components obey the extreme-value statistics. This rogue-wave-like behavior is detected only within a narrow input-pulse energy interval. By the use of numerical simulations, we show that the observed rogue-wave-like behavior is associated with pulse splitting and build-up of intense trailing pulse. The extreme events are thereafter suppressed by the intensity clamping.

© 2011 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5940) Nonlinear optics : Self-action effects
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 16, 2011
Revised Manuscript: July 18, 2011
Manuscript Accepted: July 18, 2011
Published: August 10, 2011

D. Majus, V. Jukna, E. Pileckis, G. Valiulis, and A. Dubietis, "Rogue-wave-like statistics in ultrafast white-light continuum generation in sapphire," Opt. Express 19, 16317-16323 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Akhmediev and E. Pelinovsky eds., “Rogue waves – Towards a unifying concept?,” Eur. Phys. J. Spec. Top. 185, 1–266 (2010). [CrossRef]
  2. A. I. Dyachenko and V. E. Zakharov, “Modulation instability of stokes wave implies a freak wave,” JETP Lett. 81, 255–259 (2005). [CrossRef]
  3. N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, “Extreme waves that appear from nowhere: On the nature of rogue waves,” Phys. Lett. A 373, 2137–2145 (2009). [CrossRef]
  4. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007). [CrossRef] [PubMed]
  5. M. Erkintalo, G. Genty, and J. M. Dudley, “Giant dispersive wave generation through soliton collision,” Opt. Lett. 35, 658–660 (2010). [CrossRef] [PubMed]
  6. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-6-3644 . [CrossRef] [PubMed]
  7. A. Mussot, A. Kudlinski, M. Kolobov, E. Louvergeneaux, M. Douay, and M. Taki, “Observation of extreme temporal events in CW-pumped supercontinuum,” Opt. Express 17, 17010–17015 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-19-17010 . [CrossRef] [PubMed]
  8. D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008). [CrossRef] [PubMed]
  9. M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue-wave-like characteristics in femtosecond supercontinuum generation,” Opt. Lett. 34, 2468–1470 (2009). [CrossRef] [PubMed]
  10. A. Kudlinski, B. Barviau, A. Leray, C. Spriet, L. Héliot, and A. Mussot, “Control of pulse-to-pulse fluctuations in visible supercontinuum,” Opt. Express 18, 27445–27454 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-27445 . [CrossRef]
  11. A. Aalto, G. Genty, and J. Toivonen, “Extreme-value statistics in supercontinuum generation by cascaded stimulated Raman scattering,” Opt. Express 18, 1234–1239 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-2-1234 . [CrossRef] [PubMed]
  12. K. Hammani, A. Picozzi, and C. Finot, “Extreme statistics in Raman fiber amplifiers: From analytical description to experiments,” Opt. Commun. 284, 2594–2603 (2011). [CrossRef]
  13. J. Kasparian, P. Béjot, J.-P. Wolf, and J. M. Dudley, “Optical rogue wave statistics in laser filamentation,” Opt. Express 17, 12070 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-14-12070 . [CrossRef] [PubMed]
  14. D. Majus, V. Jukna, G. Valiulis, D. Faccio, and A. Dubietis, “Spatio-temporal rogue events in femtosecond filamentation,” Phys. Rev. A 83, 025802 (2011). [CrossRef]
  15. L. Bergé, S. Mauger, and S. Skupin, “Multifilamentation of powerful optical pulses in silica,” Phys. Rev. A 81, 013817 (2010). [CrossRef]
  16. C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, “Nonlinear electromagnetic X waves,” Phys. Rev. Lett. 90, 170406 (2003). [CrossRef] [PubMed]
  17. D. Faccio, M. A. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, “Conical emission, pulse splitting, and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses,” Phys. Rev. Lett. 96, 193901 (2006). [CrossRef] [PubMed]
  18. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009). [CrossRef]
  19. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed medium,” J. Opt. Soc. Am. B 16, 637–650 (1999). [CrossRef]
  20. M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91, 043905 (2003). [CrossRef] [PubMed]
  21. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited