OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16375–16389

Surface and magnetic polaritons on two-dimensional nanoslab-aligned multilayer structure

Zhijian Zhang, Keunhan Park, and Bong Jae Lee  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 16375-16389 (2011)
http://dx.doi.org/10.1364/OE.19.016375


View Full Text Article

Enhanced HTML    Acrobat PDF (3274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The present study theoretically investigates the radiative properties of a two-dimensional (2-D) multilayer structure that has a dielectric spacer between a metallic substrate and square cross-sectional metallic gratings. Differently from the one-dimensional metallic strips coated on a dielectric spacer atop an opaque metallic film [Opt. Express 16, 11328 (2008)], the 2-D metallic gratings can support the localized surface plasmon in addition to the propagating surface plasmon along the metal-dielectric interface. Moreover, the presence of a dielectric spacer also allows the excitation of magnetic polaritons. Underlying mechanisms of the surface and magnetic polartions on the proposed structure are elucidated by employing the 2-D rigorous coupled-wave analysis. The results obtained in this study will advance our fundamental understanding of light-matter interaction at the nanometer scale and will facilitate the development of engineered nanostructures for real-world applications, such as thermophotovoltaic and photovoltaic devices.

© 2011 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(240.5420) Optics at surfaces : Polaritons

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 21, 2011
Revised Manuscript: July 30, 2011
Manuscript Accepted: August 3, 2011
Published: August 10, 2011

Citation
Zhijian Zhang, Keunhan Park, and Bong Jae Lee, "Surface and magnetic polaritons on two-dimensional nanoslab-aligned multilayer structure," Opt. Express 19, 16375-16389 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-16375


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef] [PubMed]
  2. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007). [CrossRef]
  3. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004). [CrossRef]
  4. I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B 67, 235404 (2003). [CrossRef]
  5. H. F. Ghaemi, T. Thio, and D. E. Grupp, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782(1998). [CrossRef]
  6. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001). [CrossRef]
  7. C. Zhao and J. Zhang, “Binary plasmonics: launching surface plasmon polaritons to a desired pattern,” Opt. Lett. 34(16), 2417–2419 (2009). [CrossRef] [PubMed]
  8. S. Chang and S. K. Gray, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2008). [CrossRef]
  9. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99, 137401 (2007). [CrossRef] [PubMed]
  10. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16(23), 20484–20489 (2008). [CrossRef] [PubMed]
  11. M. Yamamoto, K. Araya, and F. J. Garcia de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001). [CrossRef]
  12. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10640 (2002). [CrossRef] [PubMed]
  13. J. M. Pitark, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
  14. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  15. A. K. Sarychev, G. Shvets, and V. M. Shalaev, “Magnetic polariton resonance,” Phys. Rev. E 73, 036609 (2006). [CrossRef]
  16. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999). [CrossRef]
  17. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306, 1351–1353 (2004). [CrossRef] [PubMed]
  18. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J.F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005). [CrossRef] [PubMed]
  19. J. F. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006). [CrossRef] [PubMed]
  20. M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: the fishnet structure and its variations,” Phys. Rev. B 75, 2345114 (2007). [CrossRef]
  21. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008). [CrossRef] [PubMed]
  22. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008). [CrossRef] [PubMed]
  23. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  25. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Trans. 109, 608–619 (2008). [CrossRef]
  26. B. J. Lee, Y.-B. Chen, and Z.M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5(2), 201–213 (2008).
  27. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981). [CrossRef]
  28. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 1780–1789 (1986). [CrossRef]
  29. Y.-B. Chen and K.-H. Tan, “The profile optimization of periodic nano-structure for wavelength-selective thermophotovoltaic emitters,” Int. J. Heat Mass Transfer 53, 5542–5551 (2010). [CrossRef]
  30. J. Jiang, Rigorous Analysis and Design of Diffractive Optical Elements (Ph. D. Dissertation, The University of Alabama in Huntsville, 2000).
  31. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, 1999).
  32. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. Mater. 11, 65–74 (2002). [CrossRef]
  33. K. Park, B. J Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005). [CrossRef]
  34. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998). [CrossRef]
  35. E. Hutter and J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance,” Adv. Mat. 16(19), 1685–1706 (2004). [CrossRef]
  36. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited