OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16390–16400

Ultrafast ablation dynamics in fused silica with a white light beam probe

Ping-Han Wu, Xuan-Yu Yu, Chung-Wei Cheng, Che-Hao Liao, Shih-Wei Feng, and Hsiang-Chen Wang  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 16390-16400 (2011)
http://dx.doi.org/10.1364/OE.19.016390


View Full Text Article

Enhanced HTML    Acrobat PDF (5162 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study demonstrates a non-degenerate pump-probe spectroscopy with a white light beam probe based on a regenerative, amplified, mode-locked, Ti:sapphire laser. This white light beam probe is produced by supercontinuum generation of sapphire crystal after ultra-short pulse excitation. To implement the pump-probe experimental operation, the ablation dynamics with and without fresh spot measurements in fused silica samples are demonstrated. Combining the time-resolved differential reflection profiles in the white light range and X-ray photoelectron spectroscopy spectra of fused silica, the following ablation dynamics processes can be observed: Without fresh spot measurements, once carriers are excited, first, the three absorption bands of the intrinsic defect sites are observed within 750 fs. Then, a fast recovery is observed. This recovery comes from defect-trapped carriers excited to conduction bands through hot-carrier-phonon interactions. In the final step, a rapidly rising signal is observed after 800 fs. This signal rise comes from the creation of free-electron plasma, the density of which increases with increasing excitation energy accumulation. With fresh spot measurements, time delay of carrier dynamics among the three bands can be identified clearly within 750 fs. The intrinsic defect sites of fused silica play the key role during the ultrafast laser ablation process.

© 2011 OSA

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Ultrafast Optics

History
Original Manuscript: June 22, 2011
Revised Manuscript: July 18, 2011
Manuscript Accepted: July 25, 2011
Published: August 10, 2011

Citation
Ping-Han Wu, Xuan-Yu Yu, Chung-Wei Cheng, Che-Hao Liao, Shih-Wei Feng, and Hsiang-Chen Wang, "Ultrafast ablation dynamics in fused silica with a white light beam probe," Opt. Express 19, 16390-16400 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-16390


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brownd, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716 (1999). [CrossRef]
  2. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008). [CrossRef]
  3. J.-M. Shieh, Z.-H. Chen, B.-T. Dai, Y.-C. Wang, A. Zaitsev, and C.-L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232 (2004). [CrossRef]
  4. T. Burmester, M. Meier, H. Haferkamp, S. Barcikowski, J. Bunte, and A. Ostendorf, “Femtosecond laser cleaning of metallic cultural heritage and antique artworks,” Lasers Conser. Artworks 100, 61–69 (2005). [CrossRef]
  5. A. Wagner, R. A. Haight, and P. Longo, “MARS2: An advanced femtosecond laser mask repair tool,” Proceedings of 22nd Annual BACUS Symposium on Photomask Technology, 4889, 457 (2002).
  6. M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82(11), 2394–2397 (1999). [CrossRef]
  7. I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys., A Mater. Sci. Process. 81(8), 1627–1632 (2005). [CrossRef]
  8. I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86(15), 151110 (2005). [CrossRef]
  9. E. Lioudakis, A. Othonos, and A. G. Nassiopoulou, “Probing carrier dynamics in implanted and annealed polycrystalline silicon thin films using white light,” Appl. Phys. Lett. 88(18), 181107 (2006). [CrossRef]
  10. H. Merdji, S. Guizard, P. Martin, G. Petite, F. Quéré, B. Carré, J. F. Hergott, L. Le Déroff, P. Salières, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast electron relaxation measurements on α-SiO2 using high-order harmonics generation,” Laser Part. Beams 18(3), 489–494 (2000). [CrossRef]
  11. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009). [CrossRef]
  12. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999). [CrossRef]
  13. J. Schille, R. Eberta, U. Loeschnera, P. Scullyb, N. Goddard, and H. Exnera, “High repetition rate femto second laser processing of metals,” Proc. SPIE 7589, 758915, 758915–11 (2010). [CrossRef]
  14. S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77(7), 883–884 (2003). [CrossRef]
  15. A. K. Dharmadhikari, F. A. Rajgara, N. C. S. Reddy, A. S. Sandhu, and D. Mathur, “Highly efficient white light generation from barium fluoride,” Opt. Express 12(4), 695–700 (2004). [CrossRef] [PubMed]
  16. W. Liu, S. Petita, A. Beckera, N. Aközbekb, C. M. Bowdenb, and S. L. China, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002). [CrossRef]
  17. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiationPhys. Rev. B 73(22), 224117 (2006). [CrossRef]
  18. H.-J. Fitting, A. N. Trukhin, T. Barfels, B. Schmidt, and A. V. Czarnowski, “Radiation induced defects in SiO2,” Radiation Effects Defects Solids. 157(6), 575–581 (2002). [CrossRef]
  19. S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of nonbridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68(3), 1212–1217 (1990). [CrossRef]
  20. Z. Vardeny and J. Tauc, “Hot-carrier thermalization in amorphous silicon,” Phys. Rev. Lett. 46(18), 1223–1226 (1981). [CrossRef]
  21. Y. Kostoulas, K. B. Ucer, G. W. Wicks, and P. M. Fauchet, “Femtosecond carrier dynamics in low‐temperature grown Ga0.51In0.49P,” Appl. Phys. Lett. 67(25), 3756 (1995). [CrossRef]
  22. http://www.cuhk.edu.hk/ipro/pressrelease/Raymond%20Kwok-e.htm, http://www.uksaf.org/software.html
  23. F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, “Microscopic structure of the SiO2/Si interface,” Phys. Rev. B Condens. Matter 38(9), 6084–6096 (1988). [CrossRef] [PubMed]
  24. J. Shah, Ultrafast spectroscopy of semiconductors and semiconductor nanostructures (Springer-Verlag, Berlin, 314–323, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited