OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16448–16454

Generation of Airy solitary-like wave beams by acceleration control in inhomogeneous media

Sabino Chávez-Cerda, Ulises Ruiz, Victor Arrizón, and Héctor M. Moya-Cessa  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 16448-16454 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2951 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the propagation of Airy beams in linear gradient index inhomogeneous media. We demonstrate that by controlling the gradient strength of the medium it is possible to reduce to zero their acceleration. We show that the resulting Airy wave beam propagates in straight line due to the balance between two opposite effects, one due to the inhomogeneous medium and the other to the diffraction of the beam, in a similar way as a solitary wave in a nonlinear inhomogeneous medium. Going even further we were able to invert the sign of the acceleration of the beam.

© 2011 OSA

OCIS Codes
(000.3860) General : Mathematical methods in physics
(080.1510) Geometric optics : Propagation methods
(080.5692) Geometric optics : Ray trajectories in inhomogeneous media
(070.7345) Fourier optics and signal processing : Wave propagation
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Physical Optics

Original Manuscript: June 15, 2011
Revised Manuscript: July 28, 2011
Manuscript Accepted: July 28, 2011
Published: August 11, 2011

Sabino Chávez-Cerda, Ulises Ruiz, Victor Arrizón, and Héctor M. Moya-Cessa, "Generation of Airy solitary-like wave beams by acceleration control in inhomogeneous media," Opt. Express 19, 16448-16454 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007). [CrossRef] [PubMed]
  2. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007). [CrossRef] [PubMed]
  3. J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987). [CrossRef] [PubMed]
  4. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987). [CrossRef]
  5. D. DeBeer, S. R. Hartmann, and R. Friedberg, “Comment on “Diffraction-free beams”,” Phys. Rev. Lett. 59(22), 2611 (1987).J. Durnin, J. J. Miceli, and J. H. Eberly, “Durnin, Miceli, and Eberly reply,” Phys. Rev. Lett. 59(22), 2612 (1987). [CrossRef] [PubMed]
  6. S. Chávez-Cerda, “A new approach to Bessel beams,” J. Mod. Opt. 46, 923–930 (1999).
  7. M. V. Berry and N. L. Balazs, “Nonspreading wave-packets,” Am. J. Phys. 47(3), 264–267 (1979). [CrossRef]
  8. M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, “Parabolic nondiffracting optical wave fields,” Opt. Lett. 29(1), 44–46 (2004). [CrossRef] [PubMed]
  9. C. López-Mariscal, M. Bandres, J. Gutiérrez-Vega, and S. Chávez-Cerda, “Observation of parabolic nondiffracting optical fields,” Opt. Express 13(7), 2364–2369 (2005). [CrossRef] [PubMed]
  10. D. Marcuse, “TE modes of graded index slab waveguides,” IEEE J. Quantum Electron. 9(10), 1000–1006 (1973). [CrossRef]
  11. C.-L. Chen, Foundations of guided-wave optics (Wiley, New Jersey 2006), Ch 3.
  12. D. N. Christodoulides and T. H. Coskun, “Diffraction-free planar beams in unbiased photorefractive media,” Opt. Lett. 21(18), 1460–1462 (1996). [CrossRef] [PubMed]
  13. S. Jia, J. Lee, J. W. Fleischer, G. A. Siviloglou, and D. N. Christodoulides, “Diffusion-trapped Airy beams in photorefractive media,” Phys. Rev. Lett. 104(25), 253904 (2010). [CrossRef] [PubMed]
  14. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009). [CrossRef]
  15. I. Dolev, T. Ellenbogen, and A. Arie, “Switching the acceleration direction of Airy beams by a nonlinear optical process,” Opt. Lett. 35(10), 1581–1583 (2010). Ye, Zhuoyi; Liu, Sheng; Lou, Cibo; Zhang, Peng; Hu, Yi; Song, Daohong; Zhao, Jianlin; Chen, Zhigang, Quantum Electronics and Laser Science Conference (QELS) 2011 paper: JTuI32, OSA Technical Digest (CD).
  16. W. Liu, D. N. Neshev, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Plasmonic Airy beam manipulation in linear optical potentials,” Opt. Lett. 36(7), 1164–1166 (2011). [CrossRef] [PubMed]
  17. M. Born and E. Wolf, Principles of Optics, Seventh Ed., (Cambridge University Press, Cambridge 1999), Ch. 3.
  18. There exist several forms for producing a solution of this equation, for instance by using the Zassenhaus formula [19], or by simplifying the differential equation via a transformation (see for instance [20] for a quadratic term). The operators to disentangle the exponential of the sum of two operators can also be given in different orderings of the exponentials involved. Of course, they are all equivalent.
  19. R. M. Wilcox, “Exponential operators and parameter differentiation in quantum physics,” J. Math. Phys. 8(4), 962–982 (1967). [CrossRef]
  20. H. Moya-Cessa and M. Fernández Guasti, “Coherent states for the time dependent harmonic oscillator: the step function,” Phys. Lett. A 311(1), 1–5 (2003). [CrossRef]
  21. W. H. Louissel, Quantum Statistical Properties of Radiation (Wiley-Interscience, New York 1990), Ch. 3.
  22. H. Moya-Cessa and F. Soto-Eguibar, Differential equations: an operational approach, (Rinton Press, New Jersey 2011), Ch. 2.
  23. G. N. Watson, A treatise on the theory of Bessel functions, Ch. VI, Cambridge University Press, Cambridge 1944).
  24. W. M. Strouse, “Bouncing light beams,” Am. J. Phys. 40(6), 913–914 (1972). [CrossRef]
  25. D. Ambrosini, A. Ponticiello, G. S. Spagnolo, R. Borghi, and F. Gori, “Bouncing light beams and the Hamiltonian analogy,” Eur. J. Phys. 18(4), 284–289 (1997). [CrossRef]
  26. SLM 512, Boulder nonlinear systems.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited