OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16518–16525

Doubling the spatial frequency with cavity resonance lithography

Hyesog Lee and Ravi Verma  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 16518-16525 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1684 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the theory and report the first experimental demonstration of Cavity Resonance Lithography (CRL); a double pattering (DP) technique that can generate patterns on a photoresist 1) with twice the spatial frequency of that of the diffraction limited lithography mask, and 2) at an offset distance that is in the far field of the mask. CRL requires only a single exposure and development step and does not require any additional processes. With commercially available photoresists (PR) and developers, we have recorded a 32.5 nm half-pitch pattern (which is well below the diffraction limit) at an offset distance of 180 nm (which is well beyond the evanescent decay length scales) using 193 nm illumination. We also discuss strategies to improve the minimum feature size and potential implementation schemes.

© 2011 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(110.4235) Imaging systems : Nanolithography

ToC Category:
Imaging Systems

Original Manuscript: June 7, 2011
Revised Manuscript: July 15, 2011
Manuscript Accepted: July 15, 2011
Published: August 12, 2011

Hyesog Lee and Ravi Verma, "Doubling the spatial frequency with cavity resonance lithography," Opt. Express 19, 16518-16525 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Zimmerman, “Double patterning lithography: double the trouble or double the fun?” SPIE Newsroom (2009), http://spie.org/documents/Newsroom/Imported/1691/1691_5999_0_2009-06-24.pdf .
  2. E. S. Putna, T. R. Younkin, M. Chandhok, and K. Frasure, “EUV lithography for 30nm half pitch and beyond: exploring resolution, sensitivity, and LWR tradeoffs,” Proc. SPIE 7273, 72731L (2009). [CrossRef]
  3. C.-M. Lim, “Positive and negative tone double patterning lithography for 50nm flash memory,” Proc. SPIE 6154, 615410 (2006). [CrossRef]
  4. M. Hori, T. Nagai, A. Nakamura, T. Abe, G. Wakamatsu, T. Kakizawa, Y. Anno, M. Sugiura, S. Kusumoto, Y. Yamaguchi, and T. Shimokawa, “Sub-40-nm half-pitch double patterning with resist freezing process,” Proc. SPIE 6923, 69230H (2008). [CrossRef]
  5. W. H. Arnold, “Toward 3nm overlay and critical dimension uniformity: an integrated error budget for double patterning lithography,” Proc. SPIE 6924, 692404 (2008). [CrossRef]
  6. J. Finders, M. Dusa, B. Vleeming, H. Megens, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning for 32nm and below: an update,” Proc. SPIE 6924, 692408 (2008). [CrossRef]
  7. A. K. Raub, D. Li, A. Frauenglass, and S. R. J. Brueck, “Fabrication of 22 nm half-pitch silicon lines by single-exposure self-aligned spatial-frequency doubling,” J. Vac. Sci. Technol. B 25(6), 2224–2227 (2007). [CrossRef]
  8. C. Bencher, Y. Chen, H. Dai, W. Montgomery, and L. Huli, “22 nm half-pitch patterning by CVD spacer self alignment double patterning (SADP),” Proc. SPIE 6924, 69244E (2008). [CrossRef]
  9. S. Lee, J. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE 6924, 69242A (2008). [CrossRef]
  10. X. Gu, A. J. Berro, Y. Cho, K. Jen, S. Lee, T. Ngai, T. Ogata, W. J. Durand, A. Sundaresan, J. R. Lancaster, S. Jockusch, P. Zimmerman, N. J. Turro, and C. G. Willson, “Fundamental study of optical threshold layer approach towards double exposure lithography,” Proc. SPIE 7273, 72731C (2009). [CrossRef]
  11. C. Fonseca, M. Somervell, S. Scheer, W. Printz, K. Nafus, S. Hatakeyama, Y. Kuwahara, T. Niwa, S. Bernard, and R. Gronheid, “Advances and challenges in dual-tone development process optimization,” Proc. SPIE 7274, 72740I (2009). [CrossRef]
  12. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  13. D. Melville and R. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005). [CrossRef] [PubMed]
  14. Z. Shi, V. Kochergin, and F. Wang, “193nm Superlens imaging structure for 20 nm lithography node,” Opt. Express 17(14), 11309–11314 (2009). [CrossRef] [PubMed]
  15. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005). [CrossRef]
  16. T. E. Jewell and D. L. White, “Spatial frequency doubling lithography (SFDL) of periodic structures for integrated optical circuit technology,” J. Lightwave Technol. 7(9), 1386–1393 (1989). [CrossRef]
  17. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).
  19. The refractive index of 200 nm thick PR coated on a bare Si wafer was measured at λ = 193 nm using ellipsometry; J. A. Woollam Co., Inc.
  20. A. Yariv, Optical Electronics (Holt McDougal, 1984)
  21. M. K. Yang, S. G. Kaplan, R. H. French, and J. H. Burnett, “Index of refraction of high-index lithographic immersion fluids and its variability,” J. Micro/Nanolithogr. MEMS MOEMS 8(2), 023005 (2009). [CrossRef]
  22. K. Matsumoto, E. A. Costner, I. Nishimura, M. Ueda, and C. G. Willson, “High index resist for 193 nm immersion lithography,” Macromolecules 41(15), 5674–5680 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited