OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 16739–16748

Nonlinear and ROADM induced penalties in 28 Gbaud dynamic optical mesh networks employing electronic signal processing

Danish Rafique and Andrew D. Ellis  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 16739-16748 (2011)
http://dx.doi.org/10.1364/OE.19.016739


View Full Text Article

Enhanced HTML    Acrobat PDF (2257 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the impact of cascaded reconfigurable optical add-drop multiplexer induced penalties on coherently-detected 28 Gbaud polarization multiplexed m-ary quadrature amplitude modulation (PM m-ary QAM) WDM channels. We investigate the interplay between different higher-order modulation channels and the effect of filter shapes and bandwidth of (de)multiplexers on the transmission performance, in a segment of pan-European optical network with a maximum optical path of 4,560 km (80km x 57 spans). We verify that if the link capacities are assigned assuming that digital back propagation is available, 25% of the network connections fail using electronic dispersion compensation alone. However, majority of such links can indeed be restored by employing single-channel digital back-propagation employing less than 15 steps for the whole link, facilitating practical application of DBP. We report that higher-order channels are most sensitive to nonlinear fiber impairments and filtering effects, however these formats are less prone to ROADM induced penalties due to the reduced maximum number of hops. Furthermore, it has been demonstrated that a minimum filter Gaussian order of 3 and bandwidth of 35 GHz enable negligible excess penalty for any modulation order.

© 2011 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.4254) Fiber optics and optical communications : Networks, combinatorial network design
(060.4256) Fiber optics and optical communications : Networks, network optimization

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 15, 2011
Manuscript Accepted: July 29, 2011
Published: August 16, 2011

Citation
Danish Rafique and Andrew D. Ellis, "Nonlinear and ROADM induced penalties in 28 Gbaud dynamic optical mesh networks employing electronic signal processing," Opt. Express 19, 16739-16748 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-16739


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010). [CrossRef]
  2. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010). [CrossRef]
  3. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011). [CrossRef]
  4. D. Rafique, J. Zhao, and A. D. Ellis, “Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission,” Opt. Express 19(6), 5219–5224 (2011). [CrossRef] [PubMed]
  5. S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Experimental investigation of PDM-QAM16 transmission at 112 Gbit/s over 2400 km,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OMJ6.
  6. M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256 QAM (64 Gbit/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OMJ5.
  7. G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, M. Belmonte, A. Guglierame, A. Brinciotti, A. La Porta, F. Forghieri, C. Muzio, G. Osnago, S. Piciaccia, C. Lezzi, L. Molle, and R. Freund, “100Gb/s WDM NRZ-PM-QPSK long-haul transmission experiment over installed fiber probing non-linear reach with and without DCUs,” in 35th European Conference on Optical Communication, 2009. ECOC '09 (2009), paper 3.4.2, pp. 1–2.
  8. P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC), (2010), paper PD2.2, pp. 1–2.
  9. X. Yi, N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Tb/s coherent optical OFDM systems enabled by optical frequency combs,” J. Lightwave Technol. 28(14), 2054–2061 (2010). [CrossRef]
  10. A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and multiple modulation formats,” J. Lightwave Technol. 28(4), 466–475 (2010). [CrossRef]
  11. C. Meusburger, D. A. Schupke, and A. Lord, “Optimizing the migration of channels with higher bitrates,” J. Lightwave Technol. 28(4), 608–615 (2010). [CrossRef]
  12. W. Wei, L. Zong, and D. Qian, “Wavelength-based sub-carrier multiplexing and grooming for optical networks bandwidth virtualization,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP35.
  13. G. P. Agrawal, Nonlinear Fber Optics (Academic Press, 2007).
  14. M. S. Alfiad, M. Kuschnerov, T. Wuth, T. J. Xia, G. Wellbrock, E. D. Schmidt, D. van den Borne, B. Spinnler, C. J. Weiske, E. de Man, A. Napoli, M. Finkenzeller, S. Spaelter, M. Rehman, J. Behel, M. Chbat, J. Stachowiak, D. Peterson, W. Lee, M. Pollock, B. Basch, D. Chen, M. Freiberger, B. Lankl, and H. de Waardt, “111-Gb/s transmission over 1040km field-deployed fiber with 10/40G neighbors,” Photonics Technol. Lett. 21(10), 615–617 (2009). [CrossRef]
  15. T. Wuth, M. W. Chbat, and V. F. Kamalov, “Multi-rate (100G/40G/10G) transport over deployed optical networks,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper NTuB3.
  16. D. Rafique and A. D. Ellis, “Nonlinear penalties in long-haul optical networks employing dynamic transponders,” Opt. Express 19(10), 9044–9049 (2011). [CrossRef] [PubMed]
  17. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010). [CrossRef]
  18. L. B. Du and A. J. Lowery, “Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems,” Opt. Express 18(16), 17075–17088 (2010). [CrossRef] [PubMed]
  19. D. Rafique, M. Mussolin, M. Forzati, J. Mårtensson, M. N. Chugtai, and A. D. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express 19(10), 9453–9460 (2011). [CrossRef] [PubMed]
  20. L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Implementation efficient nonlinear equalizer based on correlated digital backpropagation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWW3.
  21. E. Ip, N. Bai, and T. Wang, “Complexity versus performance tradeoff in fiber nonlinearity compensation using frequency-shaped, multi-subband backpropagation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThF4.
  22. L. Zhu and G. Li, “Folded digital backward propagation for dispersion-managed fiber-optic transmission,” Opt. Express 19(7), 5953–5959 (2011). [CrossRef] [PubMed]
  23. T. Otani, N. Antoniades, I. Roudas, and T. E. Stern, “Cascadability of passband-flattened arrayed waveguide-grating filters in WDM optical networks,” Photonics Technol. Lett. 11(11), 1414–1416 (1999). [CrossRef]
  24. F. Heismann, “System requirements for WSS filter shape in cascaded ROADM networks,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThR1.
  25. M. Filer and S. Tibuleac, “DWDM transmission at 10Gb/s and 40Gb/s using 25GHz grid and flexible-bandwidth ROADM,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper NThB3.
  26. Y. Levy and M. Shtaif, “The effect of strong inline filtering on the amplitude jitter in long optical systems,” J. Lightwave Technol. 24(8), 3097–3102 (2006). [CrossRef]
  27. M. Borgne, “Comparison of high-level modulation schemes for high-capacity digital radio systems,” IEEE Trans. Commun. 33(5), 442–449 (1985). [CrossRef]
  28. P. Mathiopoulos and K. Feher, “Performance evaluation of a 512-QAM system in distorted channels,” IEE Proc. F Commun. Radar Signal Proc. 133(2), 199–204 (1986). [CrossRef]
  29. D. Rafique, J. Zhao, and A. D. Ellis, ““Compensation of nonlinear fibre impairments in coherent systems employing spectrally efficient modulation formats,” IEICE Transactions on Communications,” E 94-B(7), 1815–1822 (2011).
  30. K. Roberts, “Digital signal processing for coherent optical communications: current state of the art and future challenges,” in Signal Processing in Photonic Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SPWC1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited