OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 16749–16759

Vertical-cavity surface-emitting laser with liquid crystal overlay

Krassimir Panajotov and Hugo Thienpont  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 16749-16759 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1677 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We perform a theoretical study of the spectral and polarization threshold characteristics of Vertical-Cavity Surface-Emitting Lasers with Liquid Crystal overlay (LC-VCSEL) in three different configurations of the LC cell. Our model predicts the possibility of selecting between two orthogonal directions of linear polarization (LP) of the fundamental mode (x or y LP) by choosing appropriate LC length. It further predicts very strong polarization discrimination with LP mode threshold gain difference as large as several times the threshold gain of the lasing mode. We also numerically demonstrate an active control of light polarization by electro-optically tuning the LC director and show that either polarization switching between x and y LP modes or continuous change of the LP direction would be possible. Finally, we numerically demonstrate that LC-VCSEL would be capable of efficient wavelength tuning.

© 2011 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(160.3710) Materials : Liquid crystals
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 17, 2011
Revised Manuscript: April 10, 2011
Manuscript Accepted: June 9, 2011
Published: August 15, 2011

Krassimir Panajotov and Hugo Thienpont, "Vertical-cavity surface-emitting laser with liquid crystal overlay," Opt. Express 19, 16749-16759 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I.-C. Khoo, Liquid Crystals (Wiley, 2007). [CrossRef]
  2. S. M. Weiss, H. Ouyang, J. Zhang, and P. M. Fauchet, “Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals,” Opt. Express 13, 1090–1097 (2005). [CrossRef] [PubMed]
  3. V. Y. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell,” Opt. Express 18, 1283–1288 (2010). [CrossRef] [PubMed]
  4. Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003). [CrossRef]
  5. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003). [CrossRef] [PubMed]
  6. F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004). [CrossRef]
  7. Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629 (2001). [CrossRef]
  8. I.-C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystal tunable optical metamaterias,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010). [CrossRef]
  9. J. R. Andrews, “Low voltage wavelength tuning of an external cavity diode laser using a nematic liquid crystal-containing birefringent filter,” IEEE Photon. Technol. Lett. 2, 334–336 (1990). [CrossRef]
  10. J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17, 681–683 (2005). [CrossRef]
  11. C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Electrical polarization control of vertical-cavity surface-emitting lasers using polarized feedback and a liquid crystal,” IEEE Photon Technol. Lett. 11, 155–157 (1999). [CrossRef]
  12. C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Enhancement of a liquid-crystal modulator using an external-cavity VCSEL,” IEEE Photon. Technol. Lett. 11, 940–942 (1999). [CrossRef]
  13. K. Panajotov, M. Arizaleta, M. Camarena, and H. Thienpont, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004). [CrossRef]
  14. M. Arteaga, M. Lpez-Amo, H. Thienpont, and K. Panajotov, “Tailoring light polarization in vertical cavity surface emitting lasers by isotropic optical feedback from an extremely short external cavity,” Appl. Phys. Lett. 89, 091102 (2006). [CrossRef]
  15. M. A. Arteaga, M. Lopez-Amo, J. Hernandez, H. Thienpont, and K. Panajotov, “Spectral properties of edge-emitting semiconductor laser subject to optical feedback from extremely short external cavity,” Opt. Quantum Electron. 40, 69–81 (2008). [CrossRef]
  16. R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Wesbuch, “Coupeld semiconductor microcavities,” Appl. Phys. Lett. 65, 2093–2095 (1994). [CrossRef]
  17. P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, “Dual-wavelength emission from coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997). [CrossRef]
  18. M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, “Continuous-wave dual-wavelength lasing in a two-section vetrical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000). [CrossRef]
  19. D. M. Grasso, K. D. Choquette, D. K. Serkland, G. M. Peake, and K. M. Geib, “High slope efficiency measured from a composite-resonator vertical-cavity laser,” IEEE Photon. Technol. Lett. 18, 1019–1021 (2006). [CrossRef]
  20. V. Badilita, J.-F. Carlin, M. Ilegems, and K. Panajotov, “Rate-equation model for coupled-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 40, 1646–1656 (2004). [CrossRef]
  21. K. Panajotov, M. Zujewski, and H. Thienpont, “Coupled-cavity surface-emitting lasers: spectral and polarization threshold characteristics and electrooptic switching,” Opt. Express 18, 27525–27533 (2010). [CrossRef]
  22. V. Verbrugge, J.-L. de Bougrenet de la Tocnaye, and L. Dupont, “C-band wavelength-tunable vertical-cavity laser using a nano polymer dispersed liquid crystal material,” Opt. Commun. 215, 353–359 (2003). [CrossRef]
  23. O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, C. Paranthoen, N. Chevalier, O. Durand, and A. Le Corre, “Tunable VCSEL with intracavity liquid crystal layer,” EOS Annual Meeting (October 2010).
  24. O. Castany, L. Dupont, C. Paranthoen, C. Levallois, A. Le Corre, and S. Loualiche, “Liquid crystal micro-cells for tunable VCSELs,” Journes nationales sur les technologies mergentes (November 2010).
  25. M. Born and E. Wolf, Principles of Optics (Wiley, 1970).
  26. A. K. Jansen van Doornen, M. P. van Exter, and J. P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041–1043 (1996). [CrossRef]
  27. K. Panajotov, J. Danckaert, G. Verschaffelt, M. Peeters, B. Nagler, J. Albert, B. Ryvkin, H. Thienpont, and I. Veretennicoff, “Polarization behavior of vertical-cavity surface-emitting lasers: experiments, models and applications,” in Nanoscale Linear and Nonlinear Optics , M. Bertolotti, C. M. Bowden, and C. Sibilia, eds. (American Institute of Physics, 2001), Vol. 560, pp. 403–417.
  28. J. A. Yeh, C. A. Chang, C.-C. Cheng, J.-Y. Huang, and S. H. Hsu, “Microwave characteristics of liquid-crystal tunable capacitors,” IEEE J. Dev. Lett. 26, 451–453 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited