OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 16772–16783

Ensemble uncertainty of inherent optical properties

Mhd. Suhyb Salama, Frederic Mélin, and Rogier Van der Velde  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 16772-16783 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1288 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method to evaluate the combined accuracy of ocean color models and the parameterizations of inherent optical proprieties (IOPs), or model-parametrization setup. The method estimates the ensemble (collective) uncertainty of derived IOPs relative to the radiometric error and is directly applicable to ocean color products without the need for inversion. Validation shows a very good fit between derived and known values for synthetic data, with R2 > 0.95 and mean absolute difference (MADi) <0.25 m−1. Due to the influence of observation errors, these values deteriorate to 0.45 < R2 < 0.5 and 0.65 < MADi < 0.9 for in-situ and ocean color matchup data. The method is also used to estimate the maximum accuracy that could be achieved by a specific model-parametrization setup, which represents the optimum accuracy that should be targeted when deriving IOPs. Application to time series of ocean color global products collected between 1997–2007 shows few areas with increasing annual trends of ensemble uncertainty, up to 8 sr m−1decade−1. This value is translated to an error of 0.04 m−1decade−1 in the sum of derived absorption and backscattering coefficients at the blue wavelength 440 nm. As such, the developed method can be used as a tool for assessing the reliability of model-parametrization setups for specific biophysical conditions and for identifying hot-spots for which the model-parametrization setup should be reconsidered.

© 2011 OSA

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.7340) Atmospheric and oceanic optics : Water

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: April 25, 2011
Revised Manuscript: July 4, 2011
Manuscript Accepted: August 2, 2011
Published: August 15, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Mhd. Suhyb Salama, Frederic Mélin, and Rogier Van der Velde, "Ensemble uncertainty of inherent optical properties," Opt. Express 19, 16772-16783 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Su, R. A. Roebeling, J. Schulz, I. Holleman, V. Levizzani, W. J. Timmermans, H. Rott, N. Mognard-Campbell, R. de Jeu, W. Wagner, M. Rodell, M. S. Salama, G. Parodi, and L. Wang, “Observation of Hydrological Processes Using Remote Sensing,” in Treatise on Water Science, P. Wilderer, ed. (Academic Press, 2011). [CrossRef]
  2. F. Mélin, “Global distribution of the random uncertainty associated with satellite-derived chla,” IEEE Geosci. Remote Sens. Lett. 7, 220–224 (2010). [CrossRef]
  3. T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ. 113, 2424–2430 (2009). [CrossRef]
  4. P. Wang, E. Boss, and C. Roesler, “Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean color,” Appl. Opt. 44, 4074–4084 (2005). [CrossRef] [PubMed]
  5. S. Maritorena and D. Siegel, “Consistent merging of satellite ocean color data sets using a bio-optical model,” Remote Sens. Environ. 94, 429–440 (2005). [CrossRef]
  6. M. S. Salama, A. G. Dekker, Z. Su, C. M. Mannaerts, and W. Verhoef, “Deriving inherent optical properties and associated inversion-uncertainties in the dutch lakes,” Hydrol. Earth Syst. Sci. 13, 1113–1121 (2009). [CrossRef]
  7. Z. Lee, R. Arnone, C. Hu, J. Werdell, and B. Lubac, “Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm,” Appl. Opt. 49, 369–381 (2010). [CrossRef] [PubMed]
  8. M. S. Salama and A. Stein, “Error decomposition and estimation of inherent optical properties,” Appl. Opt. 48, 4926–4962 (2009). [CrossRef]
  9. Z. Lee, “Remote sensing of inherent optical properties: Fundamentals, tests of algorithms, and applications,” Tech. Rep. 5, International Ocean-Colour Coordinating Group (2006).
  10. J. Werdell and S. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122–140 (2005). [CrossRef]
  11. J. G. Acker and G. Leptoukh, “Online analysis enhances use of NASA earth science data,” Eos, Trans. AGU 88, 14–17 (2005). [CrossRef]
  12. S. Maritorena, D. Siegel, and A. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705–2714 (2002). [CrossRef] [PubMed]
  13. H. Gordon, O. Brown, R. Evans, J. Brown, R. Smith, K. Baker, and D. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988). [CrossRef]
  14. M. S. Salama and F. Shen, “Stochastic inversion of ocean color data using the cross-entropy method,” Opt. Express 18, 479–499 (2010). [CrossRef] [PubMed]
  15. Z. Lee, K. Carder, C. Mobley, R. Steward, and J. Patch, “Hyperspectral remote sensing for shallow waters: 2. deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999). [CrossRef]
  16. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic-matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981). [CrossRef]
  17. O. Kopelevich, “Small-parameter model of optical properties of sea waters,” in “Ocean Optics,”, vol. 1 Physical Ocean Optics, A. Monin, ed. (Nauka, 1983), pp. 208–234.
  18. F. Mélin, G. Zibordi, and JF. Berthon, “Assessment of satellite ocean color products at a coastal site,” Remote Sens. Environ. 110, 192–215 (2007). [CrossRef]
  19. E. Laws, Mathematical Methods for Oceanographers: An Introduction (John Wiley and Sons, 1997).
  20. C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance,” Climate Res. 30, 79–82 (2005). [CrossRef]
  21. M. Salama and Z. Su, “Bayesian model for matching the radiometric measurements of aerospace and field ocean color sensors,” Sensors 10, 7561–7575 (2010). [CrossRef] [PubMed]
  22. M. S. Salama and Z. Su, “Resolving the subscale spatial variability of apparent and inherent optical properties in ocean color matchup sites,” IEEE Trans. Geosci. Remote Sens. 49, 2612–2622 (2011). [CrossRef]
  23. M. S. Salama, J. Monbaliu, and P. Coppin, “Atmospheric correction of advanced very high resolution radiometer imagery,” Int. J. Remote Sens. 25, 1349–1355 (2004). [CrossRef]
  24. M. S. Salama and F. Shen, “Simultaneous atmospheric correction and quantification of suspended particulate matters from orbital and geostationary earth observation sensors,” Estuarine Coastal Shelf Sci. 86, 499–511 (2010). [CrossRef]
  25. E. Aas, “Estimates of radiance reflected towards the zenith at the surface of the sea,” Ocean Sci. 6, 861–876, (2010) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited