OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 16784–16796

Multilevel Maxwell-Bloch simulations in inhomogeneously broadened media

Robert Marskar and Ulf Österberg  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 16784-16796 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2972 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact numerical method for simulating ultrafast pulse interaction with inhomogeneously broadened multi-level media is reported. We use a low-dispersion pseudospectral scheme with fourth order time stepping for Maxwell’s equations, and a weakly coupled operator splitting method for the Bloch equations where inhomogeneous broadening and relaxations are also taken into account. The underlying physics is briefly discussed with emphasis on the formalism used.

© 2011 OSA

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(160.2710) Materials : Inhomogeneous optical media

ToC Category:
Ultrafast Optics

Original Manuscript: May 10, 2011
Revised Manuscript: July 23, 2011
Manuscript Accepted: July 27, 2011
Published: August 15, 2011

Robert Marskar and Ulf Österberg, "Multilevel Maxwell-Bloch simulations in inhomogeneously broadened media," Opt. Express 19, 16784-16796 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, “Generation of single-cycle THz transients with high electric-field amplitudes,” Opt. Lett. 30, 2805–2807 (2005). [CrossRef] [PubMed]
  2. R. R. Jones, D. You, and P. H. Bucksbaum, “Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,” Phys. Rev. Lett. 70, 1236–1239 (1993). [CrossRef] [PubMed]
  3. V. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, “Optical pumping and vibrational cooling of molecules,” Science 321, 232–234 (2008). [CrossRef] [PubMed]
  4. J. N. Sweetser and I. A. Walmsley, “Linear pulse propagation in stationary and nonstationary multilevel media in the transient regime,” J. Opt. Soc. Am. B 13, 601–612 (1996). [CrossRef]
  5. L. E. E. Araujo, “Ultrashort pulse propagation in multilevel systems,” Phys. Rev. A 72, 053802 (2005). [CrossRef]
  6. S. Hughes, “Breakdown of the Area theorem: carrier-wave Rabi flopping of femtosecond optical pulses,” Phys. Rev. A 81, 3363–3366 (1998).
  7. R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, “Ultrafast pulse interactions with two-level atoms,” Phys. Rev. A 52, 3082–3094 (1995). [CrossRef] [PubMed]
  8. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  9. J. A. Gruetzmacher and N. F. Scherer, “Finite-difference time-domain simulations of ultrashort pulse propagation incorporating quantum-mechanical response functions,” Opt. Lett. 28, 573–575 (2003). [CrossRef] [PubMed]
  10. S. Hughes, “Subfemtosecond soft-x-ray generation from a two-level atom: extreme carrier-wave Rabi flopping,” Phys. Rev. A 62, 055401 (2000). [CrossRef]
  11. V. P. Kalosha and J. Herrmann, “Formation of optical subcycle pulses and full Maxwell-Bloch solitary waves by coherent propagation effects,” Phys. Rev. Lett. 83, 544–547 (1998). [CrossRef]
  12. Y. Niu, K. Xia, N. Cui, S. Gong, and R. Li, “Spatiotemporal evolution and multiple self-focusing of ultrashort pulses in a resonant two-level medium,” Phys. Rev. A 78, 063835 (2008). [CrossRef]
  13. F. Schlottau, M. Piket-May, and K. Wagner, “Modeling of femtosecond pulse interaction with inhomogeneously broadened media using an iterative predictor-corrector FDTD method,” Opt. Express 13, 182–194 (2005). [CrossRef] [PubMed]
  14. B. Bidegaray, A. Bourgeade, and D. Reignier, “Introducing physical relaxations terms in Bloch equations,” J. Comp. Phys. 170, 603–613 (2000). [CrossRef]
  15. B. Bidegaray, “Time discretizations for Maxwell-Bloch equations,” Numer. Methods Partial Differ. Equ. 19, 284–300 (2003). [CrossRef]
  16. A. Bourgeade and O. Saut, “Numerical methods for the bidimensional Maxwell-Bloch equations in nonlinear crystals,” J. Comp. Phys. 213, 823–843 (2006). [CrossRef]
  17. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).
  18. Q. H. Liu, “The pseudospectral time-domain (PSTD) method: A new algorithm for solutions of Maxwell’s equations,” in Antennas and Propagation Society International Symposium Digest (IEEE, 1997), Vol. 1, pp. 122–125. [CrossRef]
  19. T.-W. Lee and S. C. Hagness, “Pseudospectral time-domain methods for modeling optical wave propagation in second-order nonlinear materials,” J. Opt. Soc. Am. B 21, 330–342 (2004). [CrossRef]
  20. S. Rosseland, “On the transmission of radiation through an absorbing medium in motion, with applications to the theory of sun-spots and solar rotation,” Astrophys. J. 63, 342–367 (1926). [CrossRef]
  21. S. Blanes, F. Casas, J. A. Oteo, and J. Ros, “A pedagogical approach to the Magnus expansion,” Eur. J. Phys. 31, 907–918 (2010). [CrossRef]
  22. R. B. Sidje, “Expokit: a software package for computing matrix exponentials,” ACM Trans. Math. Softw. 24, 130–156 (1998). [CrossRef]
  23. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited