OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 16843–16850

Enhanced luminescence efficiency by surface plasmon coupling of Ag nanoparticles in a polymer light-emitting diode

Sy-Hann Chen and Jhen-Yu Jhong  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 16843-16850 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1764 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study achieved a substantial enhancement in electroluminescence by coupling localized surface plasmons in a single layer of Ag nanoparticles. Thermal evaporation was used to fabricate 20-nm Ag particles sandwiched between a gallium-doped zinc oxide film and a glass substrate to form novel window materials for use in polymer light-emitting diodes (PLEDs). The PLEDs discussed herein are single-layer devices based on a poly(9,9-di-n-octyl-2,7-fluorene) (PFO) emissive layer. In addition to low cost, this novel fabrication method can effectively prevent interruption or degradation of the charge transport properties of the active layer to meet the high performance requirements of PLEDs. Due to the surface-plasmon-enhanced emission, the electroluminescence intensity was increased by nearly 1-fold, compared to that of the same PLED without the interlayer of Ag nanoparticles.

© 2011 OSA

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(250.2080) Optoelectronics : Polymer active devices

ToC Category:

Original Manuscript: June 6, 2011
Revised Manuscript: August 10, 2011
Manuscript Accepted: August 10, 2011
Published: August 15, 2011

Sy-Hann Chen and Jhen-Yu Jhong, "Enhanced luminescence efficiency by surface plasmon coupling of Ag nanoparticles in a polymer light-emitting diode," Opt. Express 19, 16843-16850 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express 13(14), 5522–5527 (2005). [CrossRef] [PubMed]
  2. M. Ishifuji, M. Mitsuishi, and T. Miyashita, “Enhanced optical second harmonic generation in hybrid polymer nanoassemblies based on coupled surface plasmon resonance of a gold nanoparticle array,” Appl. Phys. Lett. 89(1), 011903 (2006). [CrossRef]
  3. D. A. Clymer and M. A. Matin, “Characterization of thin-metal anode buffers in organic devices,” Microw. Opt. Technol. Lett. 48(10), 2070–2072 (2006). [CrossRef]
  4. J. Zhou, J. Yang, Y. Sun, D. Zhang, J. Shen, Q. Zhang, and K. Wang, “Effect of silver nanoparticles on photo-induced reorientation of azo groups in polymer films,” Thin Solid Films 515(18), 7242–7246 (2007). [CrossRef]
  5. C.-F. Yu, S.-H. Chen, S.-J. Sun, and H. Chou, “Influence of the grain boundary barrier height on the electrical properties of Gallium doped ZnO thin films,” Appl. Surf. Sci. 257(15), 6498–6502 (2011). [CrossRef]
  6. C. Douketis, T. L. Haslett, Z. Wang, M. Moskovits, and S. Iannotta, “Self-affine silver films and surface-enhanced Raman scattering: linking spectroscopy to morphology,” J. Chem. Phys. 113(24), 11315–11323 (2000). [CrossRef]
  7. W. A. Weimer and M. J. Dyer, “Tunable surface plasmon resonance silver films,” Appl. Phys. Lett. 79(19), 3164–3166 (2001). [CrossRef]
  8. R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92(9), 5264–5271 (2002). [CrossRef]
  9. H. N. Lin, H. L. Lin, S. S. Wang, L. S. Yu, G. Y. Perng, S. A. Chen, and S. H. Chen, “Nanoscale charge transport in an electroluminescent polymer investigated by conducting atomic force microscopy,” Appl. Phys. Lett. 81(14), 2572 (2002). [CrossRef]
  10. S.-H. Chen, “Work function changes of treated indium-tin-oxide films for organic light emitting diodes investigated using scanning surface potential microscopy,” J. Appl. Phys. 97(7), 073713 (2005). [CrossRef]
  11. S.-H. Chen, C.-F. Yu, Y.-S. Lin, W.-J. Xie, T.-W. Hsu, and D. P. Tsai, “Nanoscale surface electrical properties of aluminum zinc oxide thin ðlms investigated by scanning probe microscopy,” J. Appl. Phys. 104(11), 114314 (2008). [CrossRef]
  12. S.-H. Chen, S.-T. Yu, Y.-Y. Liou, C.-F. Yu, C.-F. Lin, and P.-C. Kao, “Increasing the PLED luminescence efficiency by exploiting the surface plasmon resonance effect,” J. Electrochem. Soc. 158(3), J53–J57 (2011). [CrossRef]
  13. S. Kawamura, J. Sakurai, M. Nakano, and M. Takagi, “Recrystallization of Si on amorphous substrates by doughnut‐shaped cw Ar laser beam,” Appl. Phys. Lett. 40(5), 394–395 (1982). [CrossRef]
  14. M. N. Islam, T. B. Ghosh, K. L. Chopra, and H. N. Acharya, “XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films,” Thin Solid Films 280(1–2), 20–25 (1996). [CrossRef]
  15. L. Kameswara Rao and V. Vinni, “Novel mechanism for high speed growth of transparent and conducting tin oxide thin films by spray pyrolysis,” Appl. Phys. Lett. 63(5), 608–611 (1993). [CrossRef]
  16. J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films,” J. Appl. Phys. 48(8), 3524–3531 (1977). [CrossRef]
  17. A. J. Campbell, D. D. C. Bradley, E. Werner, and W. Brütting, “Transient capacitance measurements of the transport and trap states distributions in a conjugated polymer,” Org. Electron. 1(1), 21–26 (2000). [CrossRef]
  18. Å. Johansson and S. Stafström, “Polaron dynamics in a system of coupled conjugated polymer chains,” Phys. Rev. Lett. 86(16), 3602–3605 (2001). [CrossRef] [PubMed]
  19. W. Brütting, S. Berleb, and A. G. Mückl, “Space-charge limited conduction with a field and temperature dependent mobility in Alq light-emitting devices,” Synth. Met. 122(1), 99–104 (2001). [CrossRef]
  20. D. M. Basko and E. M. Conwell, “Stationary polaron motion in a polymer chain at high electric fields,” Phys. Rev. Lett. 88(5), 056401 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited