OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 16851–16865

Measurement of carrier envelope offset frequency for a 10 GHz etalon-stabilized semiconductor optical frequency comb

M. Akbulut, J. Davila-Rodriguez, I. Ozdur, F. Quinlan, S. Ozharar, N. Hoghooghi, and P.J. Delfyett  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 16851-16865 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1617 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report Carrier Envelope Offset (CEO) frequency measurements of a 10 GHz harmonically mode-locked, Fabry-Perot etalon-stabilized, semiconductor optical frequency comb source. A modified multi-heterodyne mixing technique with a reference frequency comb was utilized for the measurement. Also, preliminary results from an attempt at f-2f self-referencing measurement are presented. The CEO frequency was found to be ~1.47 GHz for the particular etalon that was used.

© 2011 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 7, 2011
Revised Manuscript: July 24, 2011
Manuscript Accepted: July 26, 2011
Published: August 15, 2011

M. Akbulut, J. Davila-Rodriguez, I. Ozdur, F. Quinlan, S. Ozharar, N. Hoghooghi, and P.J. Delfyett, "Measurement of carrier envelope offset frequency for a 10 GHz etalon-stabilized semiconductor optical frequency comb," Opt. Express 19, 16851-16865 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Ye, S. Cundiff, “Femtosecond Optical Frequency Comb Technology”, (Springer 2004).
  2. I. R. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008). [CrossRef] [PubMed]
  3. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007). [CrossRef] [PubMed]
  4. C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008). [CrossRef] [PubMed]
  5. W. C. Swann and N. R. Newbury, “Frequency-resolved coherent lidar using a femtosecond fiber laser,” Opt. Lett. 31(6), 826–828 (2006). [CrossRef] [PubMed]
  6. P. J. Delfyett, S. Gee, M. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical Frequency Combs From Semiconductor Lasers and Applications in Ultrawideband Signal Processing and Communications,” J. Lightwave Technol. 24(7), 2701–2719 (2006). [CrossRef]
  7. P.J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, S. Bhooplapur, “Advanced Ultrafast Technologies Based on Optical Frequency Combs”, IEEE JSTQE, Invited paper accepted for publication (2011).
  8. M. Akbulut, S. Bhooplapur, I. Ozdur, J. Davila-Rodriguez, and P. J. Delfyett, “Dynamic line-by-line pulse shaping with GHz update rate,” Opt. Express 18(17), 18284–18291 (2010). [CrossRef] [PubMed]
  9. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical Arbitrary Waveform Generation and Characterization Using Spectral Line-by-Line Control,” J. Lightwave Technol. 24(7), 2487–2494 (2006). [CrossRef]
  10. Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007). [CrossRef]
  11. R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express 18(18), 18655–18670 (2010). [CrossRef] [PubMed]
  12. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009). [CrossRef] [PubMed]
  13. I. Hartl, H. A. Mckay , R. Thapa , B. K. Thomas , L. Dong , and M. E. Fermann , “GHz Yb-femtosecond-fiber laser frequency comb,” Proceedings of CLEO (2009).
  14. F. J. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010). [CrossRef] [PubMed]
  15. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011). [CrossRef] [PubMed]
  16. F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11(10), 103001 (2009). [CrossRef]
  17. I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, and P. J. Delfyett, “A Semiconductor-Based 10-GHz Optical Comb Source With Sub 3-fs Shot-Noise-Limited Timing Jitter and 500-Hz Comb Linewidth,” IEEE Photon. Technol. Lett. 22(6), 431–433 (2010). [CrossRef]
  18. I. Ozdur, S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, “Modified Pound-Drever-Hall scheme for high-precision free spectral range measurement of Fabry-Perot etalon,” Electron. Lett. 44(15), 927–928 (2008). [CrossRef]
  19. J. Davila-Rodriguez, C. Williams, M. Akbulut, and P. J. Delfyett, “Multi-Heterodyne Characterization of Multi-Gigahertz Spaced Optical Frequency Comb Sources,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuA1.
  20. L. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, “A New Method to Determine the Absolute Mode Number of a Mode-Locked Femtosecond-Laser Comb Used for Absolute Optical Frequency Measurements,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1066–1071 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited