OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 16898–16918

On- and off-resonance second-harmonic generation in GaAs microdisks

Paulina S. Kuo and Glenn S. Solomon  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 16898-16918 (2011)
http://dx.doi.org/10.1364/OE.19.016898


View Full Text Article

Enhanced HTML    Acrobat PDF (1259 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical description of on- and off-resonance, 4 ¯ -quasi-phasematched, second-harmonic generation (SHG) in microdisks made of GaAs or other materials possessing 4 ¯ symmetry, such as GaP or ZnSe. The theory describes the interplay between quasi-phasematching (QPM) and the cavity-resonance conditions. For optimal conversion, all waves should be resonant with the microdisk and should satisfy the 4 ¯ -QPM condition. We explore χ(2) nonlinear mixing if one of the waves is not resonant with the microdisk cavity and calculate the second-harmonic conversion spectrum. We also describe perfectly destructive 4 ¯ -QPM where both the fundamental and second-harmonic are on-resonance with the cavity but SHG is suppressed.

© 2011 OSA

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 20, 2011
Revised Manuscript: July 25, 2011
Manuscript Accepted: July 25, 2011
Published: August 15, 2011

Citation
Paulina S. Kuo and Glenn S. Solomon, "On- and off-resonance second-harmonic generation in GaAs microdisks," Opt. Express 19, 16898-16918 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-16898


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light eaves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962). [CrossRef]
  2. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992). [CrossRef]
  3. E. Lallier, M. Brevignon, and J. Lehoux, “Efficient second-harmonic generation of a CO2 laser with a quasi-phase-matched GaAs crystal,” Opt. Lett. 23(19), 1511–1513 (1998). [CrossRef] [PubMed]
  4. S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228(1-4), 183–192 (2001). [CrossRef]
  5. L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79(7), 904–906 (2001). [CrossRef]
  6. R. Haidar, N. Forget, P. Kupecek, and E. Rosencher, “Fresnel phase matching for three-wave mixing in isotropic semiconductors,” J. Opt. Soc. Am. B 21, 1522–1534 (2004). [CrossRef]
  7. H. Komine, W. H. Long, J. W. Tully, and E. A. Stappaerts, “Quasi-phase-matched second-harmonic generation by use of a total-internal-reflection phase shift in gallium arsenide and zinc selenide plates,” Opt. Lett. 23(9), 661–663 (1998). [CrossRef] [PubMed]
  8. C. Simonneau, J. P. Debray, J. C. Harmand, P. Vidakovi, D. J. Lovering, and J. A. Levenson, “Second-harmonic generation in a doubly resonant semiconductor microcavity,” Opt. Lett. 22(23), 1775–1777 (1997). [CrossRef] [PubMed]
  9. Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74(6), 063804 (2006). [CrossRef]
  10. Z. Yang, P. Chak, A. D. Bristow, H. M. van Driel, R. Iyer, J. S. Aitchison, A. L. Smirl, and J. E. Sipe, “Enhanced second-harmonic generation in AlGaAs microring resonators,” Opt. Lett. 32(7), 826–828 (2007). [CrossRef] [PubMed]
  11. P. S. Kuo, W. Fang, and G. S. Solomon, “4-quasi-phase-matched interactions in GaAs microdisk cavities,” Opt. Lett. 34(22), 3580–3582 (2009). [CrossRef] [PubMed]
  12. R. T. Horn and G. Weihs, “Directional Quasi-Phase Matching in Curved Waveguides,” http://arXiv.org/abs/1008.2190v1 .
  13. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24(6), 913–919 (1988). [CrossRef]
  14. Z. Yang and J. E. Sipe, “Generating entangled photons via enhanced spontaneous parametric downconversion in AlGaAs microring resonators,” Opt. Lett. 32(22), 3296–3298 (2007). [CrossRef] [PubMed]
  15. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004). [CrossRef] [PubMed]
  16. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010). [CrossRef] [PubMed]
  17. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vucković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17(25), 22609–22615 (2009). [CrossRef] [PubMed]
  18. A. Rodriguez, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “χ((2)) and χ((3)) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15(12), 7303–7318 (2007). [CrossRef] [PubMed]
  19. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000). [CrossRef]
  20. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003). [CrossRef]
  21. J. U. Nöckel, A. D. Stone, and R. K. Chang, “Q spoiling and directionality in deformed ring cavities,” Opt. Lett. 19(21), 1693–1695 (1994). [CrossRef] [PubMed]
  22. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998). [CrossRef] [PubMed]
  23. Y. Dumeige, “Quasi-phase-matching and second-harmonic generation enhancement in a semiconductor microresonator array using slow-light effects,” Phys. Rev. A 83(4), 045802 (2011). [CrossRef]
  24. A. Andronico, I. Favero, and G. Leo, “Difference frequency generation in GaAs microdisks,” Opt. Lett. 33(18), 2026–2028 (2008). [CrossRef] [PubMed]
  25. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005). [CrossRef] [PubMed]
  26. C. R. Pollock, Fundamentals of Optoelectronics (Irwin, 1995).
  27. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973). [CrossRef]
  28. K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Čtyroký, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37(1-3), 37–61 (2005). [CrossRef]
  29. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  30. M. Borselli, Ph.D. thesis (California Institute of Technology, 2006).
  31. T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27(8), 628–630 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited