OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 16919–16926

Nonlinearity compensation in multi-rate 28 Gbaud WDM systems employing optical and digital techniques under diverse link configurations

Danish Rafique and Andrew D. Ellis  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 16919-16926 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (4407 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Digital back-propagation (DBP) has recently been proposed for the comprehensive compensation of channel nonlinearities in optical communication systems. While DBP is attractive for its flexibility and performance, it poses significant challenges in terms of computational complexity. Alternatively, phase conjugation or spectral inversion has previously been employed to mitigate nonlinear fibre impairments. Though spectral inversion is relatively straightforward to implement in optical or electrical domain, it requires precise positioning and symmetrised link power profile in order to avail the full benefit. In this paper, we directly compare ideal and low-precision single-channel DBP with single-channel spectral-inversion both with and without symmetry correction via dispersive chirping. We demonstrate that for all the dispersion maps studied, spectral inversion approaches the performance of ideal DBP with 40 steps per span and exceeds the performance of electronic dispersion compensation by ~3.5 dB in Q-factor, enabling up to 96% reduction in complexity in terms of required DBP stages, relative to low precision one step per span based DBP. For maps where quasi-phase matching is a significant issue, spectral inversion significantly outperforms ideal DBP by ~3 dB.

© 2011 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.5040) Nonlinear optics : Phase conjugation

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 20, 2011
Revised Manuscript: July 27, 2011
Manuscript Accepted: August 8, 2011
Published: August 15, 2011

Danish Rafique and Andrew D. Ellis, "Nonlinearity compensation in multi-rate 28 Gbaud WDM systems employing optical and digital techniques under diverse link configurations," Opt. Express 19, 16919-16926 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010). [CrossRef]
  2. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011). [CrossRef]
  3. P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” European Conference on Optical Communications, PD2.2 (2010).
  4. M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256 QAM (64 Gbit/s) Coherent Optical Transmission over 160 km with an Optical Bandwidth of 5.4 GHz,” Optical Fiber Communication Conference, OThD5 (2010).
  5. D. Rafique and A. D. Ellis, “Nonlinear penalties in dynamic optical networks employing autonomous transponders,” IEEE Photon. Technol. Lett. 23(17), 1213–1215 (2011). [CrossRef]
  6. D. Rafique and A. D. Ellis, “Nonlinear penalties in long-haul optical networks employing dynamic transponders,” Opt. Express 19(10), 9044–9049 (2011). [CrossRef] [PubMed]
  7. A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and multiple modulation formats,” J. Lightwave Technol. 28(4), 466–475 (2010). [CrossRef]
  8. C. Meusburger, D. A. Schupke, and A. Lord, “Optimizing the migration of channels with higher bitrates,” J. Lightwave Technol. 28(4), 608–615 (2010). [CrossRef]
  9. M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, “Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission,” Electron. Lett. 31(23), 2027–2029 (1995). [CrossRef]
  10. D. D. Marcenac, D. Nesset, A. E. Kelly, M. Brierley, A. D. Ellis, D. G. Moodie, and C. W. Ford, “40 Gbit/s transmission over 406 km of NDSF using mid-span spectral inversion by four-wave-mixing in a 2 mm long semiconductor optical amplifier,” Electron. Lett. 33(10), 879–880 (1997). [CrossRef]
  11. I. Brener, B. Mikkelsen, K. Rottwitt, W. Burkett, G. Raybon, J. B. Stark, K. Parameswaran, M. H. Chou, M. M. Fejer, E. E. Chaban, R. Harel, D. L. Philen, and A. Kosinski, “Cancellation of all Kerr nonlinearities in long fiber spans using a LiNbO3 phase conjugator and Raman amplification,” Optical Fiber Communication Conference, 266–PD33–1 (2000).
  12. S. L. Jansen, D. Borne, B. Spinnler, S. Calabrò, H. Suche, P. M. Krummrich, W. Sohler, G. D. Khoe, and H. Waardt, “Optical phase conjugation for ultra long-haul phase-shift-keyed transmission,” J. Lightwave Technol. 24(1), 54–64 (2006). [CrossRef]
  13. F. M. Eduardo, Z. Xiang, and G. Li, “Electronic phase conjugation for nonlinearity compensation in fiber communication systems,” Optical Fiber Communication Conference, JWA025 (2011).
  14. P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006). [CrossRef]
  15. G. Li, E. Mateo, and L. Zhu, “Compensation of nonlinear effects using digital coherent receivers,” Optical Fiber Communication Conference, OWW1 (2011).
  16. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010). [CrossRef]
  17. D. Rafique, M. Mussolin, M. Forzati, J. Mårtensson, M. N. Chugtai, and A. D. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express 19(10), 9453–9460 (2011). [CrossRef] [PubMed]
  18. L. Lei, T. Zhenning, D. Liang, Y. Weizhen, O. Shoichiro, T. Takahito, H. Takeshi, and C. R. Jens, “Implementation efficient nonlinear equalizer based on correlated digital backpropagation,” Optical Fiber Communication Conference, OWW3 (2011).
  19. L. B. Du and A. J. Lowery, “Experimental demonstration of XPM compensation for CO-OFDM systems with periodic dispersion maps,” Optical Fiber Communication Conference, OWW2 (2011).
  20. M. Mussolin, D. Rafique, J. Mårtensson, M. Forzati, J. K. Fischer, L. Molle, M. Nölle, C. Schubert, and A. D. Ellis, “Polarization multiplexed 224 Gb/s 16QAM transmission employing digital back-propagation,” European Conference on Optical Communications, accepted for publication (2011).
  21. A. Chowdhury, G. Raybon, R. J. Essiambre, J. H. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar, “Compensation of intrachannel nonlinearities in 40-Gb/s pseudolinear systems using optical-phase conjugation,” J. Lightwave Technol. 23(1), 172–177 (2005). [CrossRef]
  22. M. Shtaif and M. Eiselt, “Analysis of intensity interference caused by cross-phase modulation in dispersive optical fibers,” IEEE Photon. Technol. Lett. 10(7), 979–981 (1997). [CrossRef]
  23. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007). [CrossRef] [PubMed]
  24. D. Rafique, J. Zhao, and A. D. Ellis, “Compensation of nonlinear fibre impairments in coherent systems employing spectrally efficient modulation format,” IEICE Trans. Commun. E94-B(7), 1815–1822 (2011). [CrossRef]
  25. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978). [CrossRef]
  26. A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(4), 392–394 (2000). [CrossRef]
  27. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15(23), 1351–1353 (1990). [CrossRef] [PubMed]
  28. D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited