OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 16963–16974

High-density localization of active molecules using Structured Sparse Model and Bayesian Information Criterion

Tingwei Quan, Hongyu Zhu, Xiaomao Liu, Yongfeng Liu, Jiuping Ding, Shaoqun Zeng, and Zhen-Li Huang  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 16963-16974 (2011)
http://dx.doi.org/10.1364/OE.19.016963


View Full Text Article

Enhanced HTML    Acrobat PDF (3306 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Localization-based super-resolution microscopy (or called localization microscopy) rely on repeated imaging and localization of active molecules, and the spatial resolution enhancement of localization microscopy is built upon the sacrifice of its temporal resolution. Developing algorithms for high-density localization of active molecules is a promising approach to increase the speed of localization microscopy. Here we present a new algorithm called SSM_BIC for such purpose. The SSM_BIC combines the advantages of the Structured Sparse Model (SSM) and the Bayesian Information Criterion (BIC). Through simulation and experimental studies, we evaluate systematically the performance between the SSM_BIC and the conventional Sparse algorithm in high-density localization of active molecules. We show that the SSM_BIC is superior in processing single molecule images with weak signal embedded in strong background.

© 2011 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(110.2960) Imaging systems : Image analysis
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Microscopy

History
Original Manuscript: June 24, 2011
Revised Manuscript: August 4, 2011
Manuscript Accepted: August 11, 2011
Published: August 15, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Tingwei Quan, Hongyu Zhu, Xiaomao Liu, Yongfeng Liu, Jiuping Ding, Shaoqun Zeng, and Zhen-Li Huang, "High-density localization of active molecules using Structured Sparse Model and Bayesian Information Criterion," Opt. Express 19, 16963-16974 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-16963


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007). [CrossRef] [PubMed]
  2. B. Huang, H. Babcock, and X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010). [CrossRef] [PubMed]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  4. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  5. M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  6. G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Phys. Chem. 61(1), 345–367 (2010). [CrossRef] [PubMed]
  7. S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011). [CrossRef] [PubMed]
  8. T. J. Gould, V. V. Verkhusha, and S. T. Hess, “Imaging biological structures with fluorescence photoactivation localization microscopy,” Nat. Protoc. 4(3), 291–308 (2009). [CrossRef] [PubMed]
  9. S. J. Holden, S. Uphoff, and A. N. Kapanidis, “DAOSTORM: an algorithm for high- density super-resolution microscopy,” Nat. Methods 8(4), 279–280 (2011). [CrossRef] [PubMed]
  10. F. Huang, S. L. Schwartz, J. M. Byars, and K. A. Lidke, “Simultaneous multiple-emitter fitting for single molecule super-resolution imaging,” Biomed. Opt. Express 2(5), 1377–1393 (2011). [CrossRef] [PubMed]
  11. C. Hegde, M. F. Duarte, and V. Cevher, “Compressive sensing recovery of spike trains using a structured sparsity model,” in Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS), (Saint-Malo, France) (2009), pp. 13–16.
  12. K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed. (Springer, 2002).
  13. M. Gu, Advanced Optical Imaging Theory (Springer, 2000).
  14. B. Zhang, J. Zerubia, and J. C. Olivo-Marin, “Gaussian approximations of fluorescence microscope point-spread function models,” Appl. Opt. 46(10), 1819–1829 (2007). [CrossRef] [PubMed]
  15. M. Elbaum and P. Diament, “SNR in photocounting images of rough objects in partially coherent light,” Appl. Opt. 15(9), 2268–2275 (1976). [CrossRef] [PubMed]
  16. Z. Gao, Y. Lai, and Z. Hu, “A generalized gradient projection method for optimization problems with equality and inequality constraints about arbitrary initial point,” Acta Appl. Math. Sin. 12(1), 40–49 (1996). [CrossRef]
  17. D. Mayne and E. Polak, “Feasible directions algorithms for optimization problems with equality and inequality constraints,” Math. Program. 11(1), 67–80 (1976). [CrossRef]
  18. R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86(2), 1185–1200 (2004). [CrossRef] [PubMed]
  19. T. W. Quan, P. C. Li, F. Long, S. Q. Zeng, Q. M. Luo, P. N. Hedde, G. U. Nienhaus, and Z. L. Huang, “Ultra-fast, high-precision image analysis for localization-based super resolution microscopy,” Opt. Express 18(11), 11867–11876 (2010). [CrossRef] [PubMed]
  20. P. N. Hedde, J. Fuchs, F. Oswald, J. Wiedenmann, and G. U. Nienhaus, “Online image analysis software for photoactivation localization microscopy,” Nat. Methods 6(10), 689–690 (2009). [CrossRef] [PubMed]
  21. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002). [CrossRef] [PubMed]
  22. Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995). [CrossRef]
  23. S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van De Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc. 237(1), 12–22 (2010). [CrossRef] [PubMed]
  24. A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods 5(8), 687–694 (2008). [CrossRef] [PubMed]
  25. M. P. Gordon, T. Ha, and P. R. Selvin, “Single-molecule high-resolution imaging with photobleaching,” Proc. Natl. Acad. Sci. U.S.A. 101(17), 6462–6465 (2004). [CrossRef] [PubMed]
  26. X. H. Qu, D. Wu, L. Mets, and N. F. Scherer, “Nanometer-localized multiple single-molecule fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 101(31), 11298–11303 (2004). [CrossRef] [PubMed]
  27. S. H. DeCenzo, M. C. DeSantis, and Y. M. Wang, “Single-image separation measurements of two unresolved fluorophores,” Opt. Express 18(16), 16628–16639 (2010). [CrossRef] [PubMed]
  28. X. Q. Li, G. H. Shi, and Y. D. Zhang, “Time-domain interpolation on graphics processing unit,” J. Innovative Opt. Health Sci. 4(1), 89–95 (2011). [CrossRef]
  29. C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods 7(5), 373–375 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited