OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 16985–16995

Highly efficient THG in TiO2 nanolayers for third-order pulse characterization

Susanta Kumar Das, Christoph Schwanke, Andreas Pfuch, Wolfgang Seeber, Martin Bock, Günter Steinmeyer, Thomas Elsaesser, and Ruediger Grunwald  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 16985-16995 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (3139 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Third harmonic generation (THG) of femtosecond laser pulses in sputtered nanocrystalline TiO2 thin films is investigated. Using layers of graded thickness, the dependence of THG on the film parameters is studied. The maximum THG signal is observed at a thickness of 180 nm. The corresponding conversion efficiency is 26 times larger compared to THG at the air-glass interface. For a demonstration of the capabilities of such a highly nonlinear material for pulse characterization, third-order autocorrelation and interferometric frequency-resolved optical gating (IFROG) traces are recorded with unamplified nanojoule pulses directly from a broadband femtosecond laser oscillator.

© 2011 OSA

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Nonlinear Optics

Original Manuscript: June 29, 2011
Revised Manuscript: August 4, 2011
Manuscript Accepted: August 4, 2011
Published: August 15, 2011

Susanta Kumar Das, Christoph Schwanke, Andreas Pfuch, Wolfgang Seeber, Martin Bock, Günter Steinmeyer, Thomas Elsaesser, and Ruediger Grunwald, "Highly efficient THG in TiO2 nanolayers for third-order pulse characterization," Opt. Express 19, 16985-16995 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997). [CrossRef]
  2. P. Langlois and E. P. Ippen, “Measurement of pulse asymmetry by three-photon-absorption autocorrelation in a GaAsP photodiode,” Opt. Lett. 24(24), 1868–1870 (1999). [CrossRef] [PubMed]
  3. V. N. Ginzburg, N. V. Didenko, A. V. Konyashchenko, V. V. Lozhkarev, G. A. Luchinin, G. A. Lutsenko, S. Yu. Mironov, E. A. Khazanov, and I. V. Yakovlev, “Third-order correlator for measuring the time profile of petawatt laser pulses,” Quantum Electron. 38(11), 1027–1032 (2008). [CrossRef]
  4. T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995). [CrossRef] [PubMed]
  5. T. Tsang, “Third- and fifth-harmonic generation at the interfaces of glass and liquids,” Phys. Rev. A 54(6), 5454–5457 (1996). [CrossRef] [PubMed]
  6. D. Meshulach, Y. Barad, and Y. Silberberg, “Measurement of ultrashort optical pulses by third-harmonic generation,” J. Opt. Soc. Am. B 14(8), 2122–2125 (1997). [CrossRef]
  7. T. Tsang, M. A. Krumbügel, K. W. Delong, D. N. Fittinghoff, and R. Trebino, “Frequency-resolved optical-gating measurements of ultrashort pulses using surface third-harmonic generation,” Opt. Lett. 21(17), 1381–1383 (1996). [CrossRef] [PubMed]
  8. D. N. Fittinghoff, J. A. der Au, and J. Squier, “Spatial and temporal characterizations of femtosecond pulses at high-numerical aperture using collinear, background-free, third-harmonic autocorrelation,” Opt. Commun. 247(4-6), 405–426 (2005). [CrossRef]
  9. D. S. Stoker, J. Baek, W. Wang, D. Kovar, M. F. Becker, and J. W. Keto, “Ultrafast third-harmonic generation from textured aluminum nitride-sapphire interfaces,” Phys. Rev. A 73(5), 053812 (2006). [CrossRef]
  10. R. Barille, L. Canioni, L. Sarger, and G. Rivoire, “Nonlinearity measurements of thin films by third-harmonic-generation microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 067602 (2002). [CrossRef] [PubMed]
  11. J. W. Nicholson, M. Mero, J. Jasapara, and W. Rudolph, “Unbalanced third-order correlations for full characterization of femtosecond pulses,” Opt. Lett. 25(24), 1801–1803 (2000). [CrossRef] [PubMed]
  12. T. Tölke, A. Kriltz, and A. Rechtenbach, “The influence of pressure on the structure and the self-cleaning properties of sputter deposited TiO2 layers,” Thin Solid Films 518(15), 4242–4246 (2010). [CrossRef]
  13. S. Y. Kim, “Simultaneous determination of refractive index, extinction coefficient, and void distribution of titanium dioxide thin film by optical methods,” Appl. Opt. 35(34), 6703–6707 (1996). [CrossRef] [PubMed]
  14. S. K. Das, A. Rosenfeld, M. Bock, A. Pfuch, W. Seeber, and R. Grunwald, “Scattering-controlled femtosecond-laser induced nanostructuring of TiO2 thin films,” Proc. SPIE 7925, 79251B (2011). [CrossRef]
  15. T. Utikal, T. Zentgraf, J. Kuhl, and H. Giessen, “Dynamics and dephasing of plasmon polaritons in metallic photonic crystal superlattices: time- and frequency-resolved nonlinear autocorrelation measurements and simulations,” Phys. Rev. B 76(24), 245107 (2007). [CrossRef]
  16. G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13(7), 2617–2626 (2005). [CrossRef] [PubMed]
  17. G. Stibenz and G. Steinmeyer, “Structures of interferometric frequency-resolved optical gating,” IEEE J. Sel. Top. Quantum Electron. 12(2), 286–296 (2006). [CrossRef]
  18. A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010). [CrossRef] [PubMed]
  19. G. Ramos-Ortiz, M. Cha, S. Thayumanavan, J. Mendez, S. R. Marder, and B. Kippelen, “Ultrafast-pulse diagnostic using third-order frequency-resolved optical gating in organic films,” Appl. Phys. Lett. 85(16), 3348–3350 (2004). [CrossRef]
  20. I. Amat-Roldán, I. G. Cormack, P. Loza-Alvarez, E. J. Gualda, and D. Artigas, “Ultrashort pulse characterisation with SHG collinear-FROG,” Opt. Express 12(6), 1169–1178 (2004). [CrossRef] [PubMed]
  21. R. W. Boyd, “Nonlinear optical interactions with focused Gaussian beams,” in Nonlinear Optics (Academic Press, 1992).
  22. H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009). [CrossRef]
  23. T. Hashimoto and T. Yoko, “Third-order nonlinear optical properties of sol-gel-derived V2O5, Nb2O5, and Ta2O5 thin films,” Appl. Opt. 34(16), 2941–2948 (1995). [CrossRef] [PubMed]
  24. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989). [CrossRef] [PubMed]
  25. Y. Watanabe, M. Ohnishi, and T. Tsuchiya, “Measurement of nonlinear absorption and refraction in titanium dioxide single crystal by using a phase distortion method,” Appl. Phys. Lett. 66(25), 3431–3432 (1995). [CrossRef]
  26. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991). [CrossRef]
  27. J. Ebothe, I. V. Kityk, and I. Fuks-Janczarek, “Two-photon absorption study of the large-sized nanocrystallites,” Appl. Surf. Sci. 252(16), 5763–5767 (2006). [CrossRef]
  28. J. Zhang, G. He, R. Li, and X. Chen, “Fabrication and optical properties of single-crystalline beta barium borate naorods,” J. Alloy. Comp. 489(2), 504–508 (2010). [CrossRef]
  29. B. Kulyk, Z. Essaidi, V. Kapustianyk, B. Turko, V. Rudyk, M. Partyka, M. Addou, and B. Sahraoui, “Second and third-order nonlinear optical properties of nanostructured ZnO thin films deposited on a-BBO and LiNbO3,” Opt. Commun. 281(24), 6107–6111 (2008). [CrossRef]
  30. G. I. Petrov, V. Shcheslavskiy, V. V. Yakovlev, I. Ozerov, E. Chelnokov, and W. Marine, “Efficient third-harmonic generation in a thin nanocrystalline film of ZnO,” Appl. Phys. Lett. 83(19), 3993–3995 (2003). [CrossRef]
  31. S. M. Gallagher, A. W. Albrecht, J. D. Hybl, B. L. Landin, B. Rajaram, and D. M. Jonas, “Heterodyne detection of the complete electric field of femtosecond four wave mixing signals,” J. Opt. Soc. Am. B 15(8), 2338–2345 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited