OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 16996–17001

8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band

Andrei Caliman, Alexandru Mereuta, Grigore Suruceanu, Vladimir Iakovlev, Alexei Sirbu, and Eli Kapon  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 16996-17001 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2124 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report record-high fundamental mode output power of 8 mW at 0 °C and 1.5 mW at 100°C achieved with wafer-fused InAlGaAs-InP/AlGaAs-GaAs 1550 nm VCSELs incorporating a re-grown tunnel junction and un-doped AlGaAs/GaAs distributed Bragg reflectors. A broad wavelength tuning range of 15 nm by current variation and wavelength setting in a spectral range of 40 nm on the same VCSEL wafer are demonstrated as well. This performance positions wafer-fused VCSELs as prime candidates for many applications in low power consumption, “green” photonics.

© 2011 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 29, 2011
Revised Manuscript: August 4, 2011
Manuscript Accepted: August 7, 2011
Published: August 15, 2011

Andrei Caliman, Alexandru Mereuta, Grigore Suruceanu, Vladimir Iakovlev, Alexei Sirbu, and Eli Kapon, "8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band," Opt. Express 19, 16996-17001 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics 3(1), 27–29 (2009). [CrossRef]
  2. R. Nabiev, http//archives.sensorsmag com/articles (2003).
  3. N. Nishiyama, C. Caneau, J. D. Downie, M. Sauer, and C.-E. Zah, “10-Gbps 1.3 and 1.55-μm InP- based VCSELs: 85°C 10-km error-free transmission and room temperature 40-km transmission at 1.55- μm with EDC,” in Proceedings of OFC (2006), paper PDP 23.
  4. W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BSB passivated 1.55- μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006). [CrossRef]
  5. J. P. Debray, N. Bouche, R. Le Roux, R. Raj, and M. Quillec, “Monolithic vertical cavity device lasing at 1.55 μm in InGaAlAs system,” Electron. Lett. 33(10), 868–869 (1997). [CrossRef]
  6. M.-C. Amann, “Progress in 1550 nm VCSELs,” in Proceedings of ECOC (2007), paper Wd 8.1.1.
  7. M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-epitaxial InAlGaAs-InP VCSELs in the 1.3–1.6-/spl μ /m wavelength range for CWDM band applications,” IEEE Photon. Technol. Lett. 18(16), 1717–1719 (2006). [CrossRef]
  8. A. Syrbu, Mereuta, V. Iakovlev, A. Caliman, P.Royo, E.Kapon, “10 Gbps VCSELs with High Single Mode Output in 1310 nm and 1550 nm Wavelength Bands,” Paper OThS2, OFC-2008, San-Diego, 2008.
  9. A. Mereuta, G. Suruceanu, A. Caliman, V. Iacovlev, A. Sirbu, and E. Kapon, “10-Gb/s and 10-km error-free transmission up to 100°C with 1.3-μm wavelength wafer-fused VCSELs,” Opt. Express 17(15), 12981–12986 (2009). [CrossRef] [PubMed]
  10. V. Jayaraman, M. Mehta, A. W. Jackson, S. Wu, Y. Okuno, J. Piprek, and J. E. Bowers, “High power 1320 nm wafer bonded VCSELs with tunnel junctions,” IEEE Photon. Technol. Lett. 15(11), 1495–1497 (2003). [CrossRef]
  11. A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007). [CrossRef]
  12. T. Gruendl, M. Mueller, K. Geiger, C. Grasse, G. Boehm, R. Meyer, and M. C. Amann, “High-Power BCB Encapsulated VCSELs based on InP,” in Proceedings of CLEO: Science and Innovations (2011), paper CTuP1.
  13. A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004). [CrossRef]
  14. V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005). [CrossRef]
  15. A. Mereuta, A. Sirbu, V. Iakovelv, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimization for high-power and high-temperature operation,” Journal of Crystal Growth, Volume 272,” Issues 1–4(10), 520–525 (2004).
  16. A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited