OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17040–17052

Selectively transparent and conducting photonic crystal rear-contacts for thin-film silicon-based building integrated photovoltaics

P. G. O’Brien, A. Chutinan, P. Mahtani, K. Leong, G. A. Ozin, and N. P. Kherani  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 17040-17052 (2011)
http://dx.doi.org/10.1364/OE.19.017040


View Full Text Article

Enhanced HTML    Acrobat PDF (3599 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wave-optics analysis is performed to show that selectively transparent and conducting photonic crystals (STCPCs) can be utilized as rear contacts to enhance the performance of building-integrated photovoltaics (BIPV). For instance, the current generated in an a-Si:H cell with an STCPC functioning as its rear contact is comparable to that of a similar cell with an optimized ZnO/Ag rear contact. However, the solar lumens (~3.5 klm/m2) and power (~430W/m2) transmitted through the cell with the STCPC rear contact can potentially provide indoor heating and lighting, respectively. Moreover, experimental results show that STCPC rear contacts could be used to control the color temperature of light transmitted through BIPV panels.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.0310) Thin films : Thin films
(350.6050) Other areas of optics : Solar energy
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Solar Energy

History
Original Manuscript: June 27, 2011
Revised Manuscript: July 29, 2011
Manuscript Accepted: August 6, 2011
Published: August 16, 2011

Citation
P. G. O’Brien, A. Chutinan, P. Mahtani, K. Leong, G. A. Ozin, and N. P. Kherani, "Selectively transparent and conducting photonic crystal rear-contacts for thin-film silicon-based building integrated photovoltaics," Opt. Express 19, 17040-17052 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-17040


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Ginley, M. A. Green, and R. Collins, “Solar energy conversion toward 1 terawatt,” Mater. Res. Bull. 33(4), 355–364 (2008). [CrossRef]
  2. Electricity from Renewable Resources: Status, Prospects, and Impediments, American's Energy Future Panel on Electricity from Renewable Resources, National Academy of Sciences, National Academy of Engineering, National Research Council of the National Academies. (National Academies Press, 2010), Ch. 2.
  3. T. T. Chow, “A review on photovoltaic/thermal hybrid solar technology,” Appl. Energy 87(2), 365–379 (2010). [CrossRef]
  4. H. A. Zondag, “Flat-plate PV-thermal collectors and systems: a review,” Renew. Sustain. Energy Rev. 12(4), 891–959 (2008). [CrossRef]
  5. H. Maurus, M. Schmid, B. Blersch, P. Lechner, and H. Schade, “PV for buildings: benefits and experiences with amorphous silicon in BIPV applications,” Refocus 5(6), 22–27 (2004). [CrossRef]
  6. M. Pagliaro, R. Ciriminna, and G. Palmisano, “BIPV: merging the photovoltaic with the construction industry,” Prog. Photovolt. Res. Appl. 18(1), 61–72 (2010). [CrossRef]
  7. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977). [CrossRef]
  8. A. V. Shah, R. Platz, and H. Keppner, “Thin-film silicon solar cells: a review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1–4), 501–520 (1995). [CrossRef]
  9. J. Meier, S. Dubail, R. Flückiger, D. Fischer, H. Keppner, and A. Shah, “Intrinsic microcrystalline silicon (µc-Si:H)- a promising new thin film solar cell material,” in Proceedings of the 1st World Conference on Photovoltaic Energy Conversion (IEEE, New York, 1994), pp. 409–412.
  10. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  11. P. G. O’Brien, A. Chutinan, K. Leong, N. P. Kherani, G. A. Ozin, and S. Zukotynski, “Photonic crystal intermediate reflectors for micromorph solar cells: a comparative study,” Opt. Express 18(5), 4478–4490 (2010). [CrossRef] [PubMed]
  12. S. Fahr, C. Rockstuhl, and F. Lederer, “The interplay of intermediate reflectors and randomly textured surfaces in tandem solar cells,” Appl. Phys. Lett. 97(17), 173510 (2010). [CrossRef]
  13. S. B. Mallick, N. P. Sergeant, M. Agrawal, J. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” Mater. Res. Bull. 36(6), 453–460 (2011). [CrossRef]
  14. F. Duerinckx, I. Kuzma-Filipek, K. Van Nieuwenhuysen, G. Beaucarne, and J. Poortmans, “Reorganized porous silicon Bragg reflectors for thin-film silicon solar cells,” IEEE Electron Device Lett. 27(10), 837–839 (2006). [CrossRef]
  15. X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. (Deerfield Beach Fla.) 23(7), 843–847 (2011). [CrossRef] [PubMed]
  16. P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 611–616 (2010). [CrossRef] [PubMed]
  17. P. G. O’Brien, D. P. Puzzo, N. P. Kherani, G. A. Ozin, A. Chutinan, Z. Lu, and M. G. Helander, “Transparent conductive porous nanocomposites and methods of fabrication thereof,” Pat. No. WO/2011/044687, (April 21, 2011).
  18. C. Z. O. Transparent, Basics and Applications in Thin Film Solar Cells, ed. R. Hull, J. Parisi, R.M. Osgood, and H. Warlimont, (Springer, 2008).
  19. J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004). [CrossRef]
  20. J. Springer, A. Poruba, and M. Vanecek, “Improved three-dimensional optical model for thin-film silicon solar cells,” J. Appl. Phys. 96(9), 5329–5337 (2004). [CrossRef]
  21. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999). [CrossRef]
  22. M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008). [CrossRef]
  23. ASTMG, 173–03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Degree Tilted Surface (ASTM International, 2005).
  24. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical and Graphical Information, 1st edition, (Kluwer Acaemic Publishers, 1999).
  25. F. David, Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, 1985).
  26. R. B. Stephens and G. D. Cody, “Optical reflectance and transmission of a textured surface,” Thin Solid Films 45(1), 19–29 (1977). [CrossRef]
  27. F. E. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, 2006), Ch.16.
  28. A. Nabil and J. Mardaljevic, “Useful daylight illuminance: a new paradigm for assessing daylight in buildings,” Lighting Res. Tech. 37(1), 41–59 (2005). [CrossRef]
  29. S. Hegedus, “Thin film solar modules: the low cost, high throughput and versatile alternative to Si wafers,” Prog. Photovolt. Res. Appl. 14(5), 393–411 (2006). [CrossRef]
  30. Á. Ruiz, J. M. Salmerόn, F. Sánchez, R. González, and S. Álvarez, “A calculation model for trombe walls and its use as a passive cooling technique,” International Conference on Passive and Low Energy Cooling for the Built Environment, (Santorini, 2005), pp. 365–369.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited