OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17133–17142

Fano zeros in photoelectron spectra of an autoionization system interacting with a neighboring atom

Jan Peřina, Jr., Antonín Lukš, Vlasta Peřinová, and Wieslaw Leoński  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 17133-17142 (2011)
http://dx.doi.org/10.1364/OE.19.017133


View Full Text Article

Enhanced HTML    Acrobat PDF (821 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photoelectron ionization spectra of an autoionization system interacting with a neighboring two-level atom are studied using the method of canonical transformation. Conditions for the occurrence of a Fano zero are exactly derived, together with its frequency. Ionization spectra are typically composed of at most four peaks in this case. Sharp peaks occur not far from the Fano zero due to the confluence of bound-free coherences. Spectral peaks close to the Fano zero are suppressed. Also dynamical zeros appearing once per the Rabi period in conditioned photoelectron ionization spectra are observed.

© 2011 OSA

OCIS Codes
(020.3690) Atomic and molecular physics : Line shapes and shifts
(300.6350) Spectroscopy : Spectroscopy, ionization

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: June 7, 2011
Revised Manuscript: July 13, 2011
Manuscript Accepted: July 24, 2011
Published: August 17, 2011

Citation
Jan Peřina, Antonín Lukš, Vlasta Peřinová, and Wieslaw Leoński, "Fano zeros in photoelectron spectra of an autoionization system interacting with a neighboring atom," Opt. Express 19, 17133-17142 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-17133


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]
  2. K. Rzażewski and J. H. Eberly, “Confluence of bound-free coherences in laser-induced autoionization,” Phys. Rev. Lett. 47, 408–412 (1981). [CrossRef]
  3. P. Lambropoulos and P. Zoller, “Autoionizing states in strong laser fields,” Phys. Rev. A 24, 379–397 (1981). [CrossRef]
  4. M. Lewenstein, J. W. Haus, and K. Rzażewski, “Photon spectrum in laser-induced autoionization,” Phys. Rev. Lett. 50, 417–420 (1983). [CrossRef]
  5. J. W. Haus, M. Lewenstein, and K. Rzażewski, “Laser-induced autoionization in the presence of radiative damping and transverse relaxation,” Phys. Rev. A 28, 2269–2281 (1983). [CrossRef]
  6. G. S. Agarwal, S. L. Haan, and J. Cooper, “Radiative decay of autoionizing states in laser fields. I. general theory,” Phys. Rev. A 29, 2552–2565 (1984). [CrossRef]
  7. K. Rzażewski and J. H. Eberly, “Photoexcitation of an autoionizing resonance in the presence of off-diagonal relaxation,” Phys. Rev. A 27, 2026–2042 (1983). [CrossRef]
  8. W. Leoński and V. Bužek, “Quantum laser field effect on the photoelectron spectrum for auto-ionizing systems,” J. Mod. Opt. 37, 1923–1934 (1990). [CrossRef]
  9. W. Leoński, “Squeezed-state effect on bound-continuum transitions,” J. Opt. Soc. Am. B 10, 244–252 (1993). [CrossRef]
  10. L. Journel, B. Rouvellou, D. Cubaynes, J. M. Bizau, F. J. Willeumier, M. Richter, P. Sladeczek, K.-H. Selbman, P. Zimmerman, and H. Bergerow, “First observation of a Fano profile following one step autoionization into a double photoionization continuum,” J. Physique IV 3, 217–226 (1993).
  11. E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation dynamics in an autoionization medium,” Phys. Rev. A 60, 642–647 (1999). [CrossRef]
  12. A. Raczyński, M. Rzepecka, J. Zaremba, and S. Zielińska-Kaniasty, “Electromagnetically induced transparency and light slowdown for Λ-like systems with a structured continuum,” Opt. Commun. 266, 552–557 (2006). [CrossRef]
  13. P. Durand, I. Paidarová, and F. X. Gadéa, “Theory of Fano profiles,” J. Phys. B At. Mol. Opt. Phys. 34, 1953–1966 (2001). [CrossRef]
  14. W. Leoński, R. Tanaś, and S. Kielich, “Laser-induced autoionization from a double Fano system,” J. Opt. Soc. Am. B 4, 72–77 (1987). [CrossRef]
  15. W. Leoński and R. Tanaś, “Dc-field effects on the photoelectron spectrum from a system with two autoionising levels,” J. Phys. B At. Mol. Opt. Phys. 21, 2835–2844 (1988). [CrossRef]
  16. W. Leoński, R. Tanaś, and S. Kielich, “Effect of dc field coupling on the photoelectron spectrum from double auto-ionising levels,” J. Phys. D 21, S125–S127 (1988). [CrossRef]
  17. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010). [CrossRef]
  18. A. Lukš, V. Peřinová, J. Peřina, J. Křepelka, and W. Leoński, “Photoelectron spectra for an atom with one autoionizing level that interacts with a neighbor,” in “Wave and Quantum Aspects of Contemporary Optics: Proceedings of SPIE, Vol. 7746 ,” J. Müllerová, D. Senderáková, and S. Jurecka, eds. (SPIE, Bellingham, 2010), p. 77460W.
  19. J. Peřina, A. Lukš, W. Leoński, and V. Peřinová, “Photoionization electron spectra in a system interacting with a neighboring atom,” Phys. Rev. A 83, 053416 (2011). [CrossRef]
  20. J. Peřina, A. Lukš, W. Leoński, and V. Peřinová, “Photoelectron spectra in an autoionization system interacting with a neighboring atom,” Phys. Rev. A 83, 053430 (2011). [CrossRef]
  21. B. Najjari, A. B. Voitkiv, and C. Müller, “Two-center resonant photoionization,” Phys. Rev. Lett. 105, 153002 (2010). [CrossRef]
  22. E. A. Silinsh and V. Čápek, Organic Molecular Crystals: Interaction, Localization and Transport Phenomena (Oxford University Press/American Institute of Physics, 1994).
  23. A. B. Voitkiv and B. Najjari, “Two-center dielectronic recombination and resonant photoionization,” Phys. Rev. A 82, 052708 (2010). [CrossRef]
  24. P. Meystre and P. Sargent, Elements of Quantum Optics (Springer, 2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited