OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17158–17166

All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications

P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 17158-17166 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1370 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we report all-optical regeneration of the state of polarization of a 40-Gbit/s return-to-zero telecommunication signal as well as its temporal intensity profile and average power thanks to an easy-to-implement, all-fibered device. In particular, we experimentally demonstrate that it is possible to obtain simultaneously polarization stabilization and intensity profile regeneration of a degraded light beam thanks to the combined effects of counterpropagating four-wave mixing, self-phase modulation and normal chromatic dispersion taking place in a single segment of optical fiber. All-optical regeneration is confirmed by means of polarization and bit-error-rate measurements as well as real-time observation of the 40 Gbit/s telecommunication signal.

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.4320) Optical devices : Nonlinear optical devices
(250.4745) Optoelectronics : Optical processing devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 21, 2011
Revised Manuscript: August 8, 2011
Manuscript Accepted: August 9, 2011
Published: August 17, 2011

P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, "All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications," Opt. Express 19, 17158-17166 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000). [CrossRef] [PubMed]
  2. C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986). [CrossRef]
  3. L. E. Nelson, C. Antonelli, A. Mecozzi, M. Birk, P. Magill, A. Schex, and L. Rapp, “Statistics of polarization dependent loss in an installed long-haul WDM system,” Opt. Express 19(7), 6790–6796 (2011). [CrossRef] [PubMed]
  4. J. Garnier, J. Fatome, and G. Le Meur, “Statistical analysis of pulse propagation driven by polarization-mode dispersion,” J. Opt. Soc. Am. B 19(9), 1968–1977 (2002). [CrossRef]
  5. N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun. 142(1-3), 119–125 (1997). [CrossRef]
  6. M. Boroditsky, M. Brodsky, N. J. Frigo, P. Magill, and H. Rosenfeldt, “Polarization dynamics in installed fiberoptic systems,” in IEEE LEOS Annual Meeting Conference Proceedings (LEOS), 413–414 (2005).
  7. I. P. Kaminow and T. Li, Optical fiber Telecommunications IV-B Systems and Impairments, 4th ed., (Academic Press, San Diego, 2002).
  8. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008). [CrossRef]
  9. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009). [CrossRef]
  10. N. Hitoshi, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot alloptical switch for future photonic networks,” Opt. Express 12(26), 6606–6614 (2004). [CrossRef] [PubMed]
  11. G. P. Agrawal, Nonlinear Fiber Optics, 3th ed, Academic Press, Boston, 2001.
  12. R. J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,” Electron. Lett. 35(18), 1576–1578 (1999). [CrossRef]
  13. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15(23), 1351–1353 (1990). [CrossRef] [PubMed]
  14. L. F. Mollenauer, J. P. Gordon, and F. Heismann, “Polarization scattering by soliton-soliton collisions,” Opt. Lett. 20(20), 2060–2062 (1995). [CrossRef] [PubMed]
  15. B. C. Collings and L. Boivin, “Nonlinear polarization evolution induced by cross ‐ phase modulation and its impact on transmission systems,” IEEE Photon. Technol. Lett. 12(11), 1582–1584 (2000). [CrossRef]
  16. M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” J. Lightwave Technol. 24(11), 4172–4183 (2006). [CrossRef]
  17. B. Koch, R. Noé, V. Mirvoda, H. Griesser, S. Bayer, and H. Wernz, “Record 59-krad/s Polarization Tracking in 112-Gb/s, 640-km, PDM-RZ-DQPSK Transmission,” IEEE Photon. Technol. Lett. 22(19), 1407–1409 (2010). [CrossRef]
  18. J. Cai, O. V. Sinkin, C. R. Davidson, D. G. Foursa, A. J. Lucero, M. Nissov, A. N. Pilipetskii, W. W. Patterson, and N. S. Bergano, “40 Gb/s Transmission Using Polarization Division Multiplexing (PDM) RZ-DBPSK with Automatic Polarization Tracking,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP4.
  19. R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010). [CrossRef]
  20. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in European Conference on Optical Communication, ECOC'98, 475–476, Madrid, Spain (1998).
  21. M. Matsumoto, “Fiber-Based All-Optical Signal Regeneration,” to be published in IEEE J. Sel. Top. Quant. (2011). [CrossRef]
  22. L. A. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007). [CrossRef] [PubMed]
  23. M. Matsumoto, “Performance Analysis and Comparison of Optical 3R Regenerators Utilizing Self-Phase Modulation in Fibers,” J. Lightwave Technol. 22(6), 1472–1482 (2004). [CrossRef]
  24. C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008). [CrossRef]
  25. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17(2), 947–955 (2009). [CrossRef] [PubMed]
  26. V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Theory of fiber optic Raman polarizers,” Opt. Lett. 35(23), 3970–3972 (2010). [CrossRef] [PubMed]
  27. L. Ursini, M. Santagiustina, and L. Palmieri, “Raman Nonlinear Polarization Pulling in the Pump Depleted Regime in Randomly Birefringent Fibers,” IEEE Photon. Technol. Lett. 23(4), 1041–1135 (2011). [CrossRef]
  28. L. Thevenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplification”, in Optical Fiber Communication Conference, OFC’08, paper OML7 (2008).
  29. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008). [CrossRef] [PubMed]
  30. A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin Amplification in Randomly Birefringent and Unidirectionally Spun Fibers,” IEEE Photon. Technol. Lett. 20(16), 1420–1422 (2008). [CrossRef]
  31. J. Fatome, S. Pitois, and G. Millot, “Experimental evidence of Brillouin-induced polarization wheeling in highly birefringent optical fibers,” Opt. Express 17(15), 12612–12618 (2009). [CrossRef] [PubMed]
  32. J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, “Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling,” Opt. Lett. 25(4), 257–259 (2000). [CrossRef] [PubMed]
  33. S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: theory and experiments,” J. Opt. Soc. Am. B 18(4), 432–443 (2001). [CrossRef]
  34. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16(9), 6646–6651 (2008). [CrossRef] [PubMed]
  35. V. V. Kozlov, J. Nuno, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fibers,” J. Opt. Soc. Am. B 28(1), 100–108 (2011). [CrossRef]
  36. J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18(15), 15311–15317 (2010). [CrossRef] [PubMed]
  37. L. Provost, C. Finot, P. Petropoulos, and D. J. Richardson, “A 2R Mamyshev Regeneration Architecture Based on a Three-Fiber Arrangement,” J. Lightwave Technol. 28(9), 1373–1379 (2009). [CrossRef]
  38. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization- multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010). [CrossRef]
  39. M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2x100Gb/s, over two modes of 40km-long prototype few-mode fiber, using LCOS-based mode multiplexer and demultiplexer,” in Optical Fiber Communication Conference OFC’11, paper PDPB9 (2011).
  40. A. Bogoni, X. Wu, S. R. Nuccio, N. Ahmed, and A. E. Willner, “160 Gbit/s binary-to-quaternary amplitude shift keying encoding in the optical domain,” Opt. Lett. 36(11), 1978–1980 (2011). [CrossRef] [PubMed]
  41. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010). [CrossRef] [PubMed]
  42. L. Fu, M. Rochette, V. Ta’eed, D. Moss, and B. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005). [CrossRef] [PubMed]
  43. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. N. Petrovich, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010). [CrossRef]
  44. S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70(1), 88–94 (2005). [CrossRef]
  45. S. Pitois, A. Sauter, and G. Millot, “Simultaneous achievement of polarization attraction and Raman amplification in isotropic optical fibers,” Opt. Lett. 29(6), 599–601 (2004). [CrossRef] [PubMed]
  46. C. Finot, J. Fatome, S. Pitois, G. Millot, and E. Pincemin, “Active Mamyshev Regenerator,” Opt. Rev. 18(3), 257–263 (2011). [CrossRef]
  47. M. Matsumoto, “A fiber-based all-optical 3R regenerator for DPSK signals,” IEEE Photon. Technol. Lett. 19(5), 273–275 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited