OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17167–17172

Demonstration of nonlinear absorption in Au semi-continuous film by electrical measurement

M. M. A. Yajadda, D. I. Farrant, I. Levchenko, K.-H. Müller, and K. Ostrikov  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 17167-17172 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1182 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have demonstrated the nonlinear absorption at 532 nm wavelength in an Au semi-continuous film (SF) resulting from smearing of the Fermi distribution and diffusion of conduction electrons into the substrate. The Au SF was irradiated by a pulsed laser with 8 ns pulse width at 532 nm in near resonance with the interband transition of the Au. We determined the temperature increase in the SF for different intensities by electrical measurement. We calculated the temperature increase by using a 1D heat transport equation; comparing the results of the calculation with measured values for the temperature increase, revealed the nonlinear absorption in the Au SF. We employed this deviation from linear behaviour to determine the nonlinear absorption coefficient.

© 2011 OSA

OCIS Codes
(000.6850) General : Thermodynamics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: June 27, 2011
Revised Manuscript: July 29, 2011
Manuscript Accepted: August 2, 2011
Published: August 17, 2011

M. M. A. Yajadda, D. I. Farrant, I. Levchenko, K.-H. Müller, and K. Ostrikov, "Demonstration of nonlinear absorption in Au semi-continuous film by electrical measurement," Opt. Express 19, 17167-17172 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005). [CrossRef]
  2. Y. A. Akimov and H. S. Chu, “Plasmon coupling effect on propagation of surface Plasmon polaritons at a continuous metal/dielectric interface,” Phys. Rev. B 83(16), 165412 (2011). [CrossRef]
  3. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009). [CrossRef]
  4. S. W. Liu and M. Xiao, “Electro-optic switch in ferroelectric thin films mediated by surface plasmons,” Appl. Phys. Lett. 88(14), 143512 (2006). [CrossRef]
  5. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006). [CrossRef] [PubMed]
  6. S. Buil, J. Aubineau, J. Laverdant, and X. Quelin, “Local field intensity enhancements on gold semicontinuous films investigated with an aperture nearfield optical microscope in collection mode,” J. Appl. Phys. 100(6), 063530 (2006). [CrossRef]
  7. Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminium nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008). [CrossRef]
  8. T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009). [CrossRef]
  9. D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “z-scan measurement of the nonlinear absorption of a thin gold film,” J. Appl. Phys. 86(11), 6200 (1999). [CrossRef]
  10. S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, “Z-scan determination of the third-order optical nonlinearity of gold: silica nanocomposites,” J. Appl. Phys. 88(8), 4469 (2000). [CrossRef]
  11. C. S. Yelleswarapu and S. R. Kothapalli, “Nonlinear photoacoustics for measuring the nonlinear optical absorption coefficient,” Opt. Express 18(9), 9020–9025 (2010). [CrossRef] [PubMed]
  12. I. Levchenko, K. Ostrikov, K. Diwan, K. Winkler, and D. Mariotti, “Plasma-driven self-organization of Ni nanodot arrays on Si(100),” Appl. Phys. Lett. 93(18), 183102 (2008). [CrossRef]
  13. M. M. A. Yajadda, I. Levchenko, Z. J. Han, and K. Ostrikov, “Hierarchical multilevel arrays of self-assembled gold nanoparticles: Control of resistivity-temperature dependence,” Appl. Phys. Lett. 97(16), 163109 (2010). [CrossRef]
  14. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons 1998).
  15. Y. Inaba, I. Zana, C. Swartz, Y. Kubota, T. Klemmer, J. W. Harrell, and G. B. Thompson, “Time-temperature-transormation measurements of Fe-Pt thin films in the millisecond regime using pulse laser processing,” J. Appl. Phys. 108(10), 103907 (2010). [CrossRef]
  16. R. Kato and I. Hatta, “Thermal Conductivity Measurement of Thermally-Oxidized SiO2 Films on a Silicon Wafer Using a Thermo-Reflectance Technique,” Int. J. Therm. 26(1), 179–190 (2005). [CrossRef]
  17. N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B 75(15), 155426 (2007). [CrossRef]
  18. G. L. Eesley, “Generation of nonequilibrium electron and lattice temperature in copper by picoseconds laser pulses,” Phys. Rev. B 33(4), 2144–2151 (1986). [CrossRef]
  19. P. E. Hopkins and P. M. Norris, “Substrate influence in electron-phonon coupling measurements in thin Au films,” Appl. Surf. Sci. 253(15), 6289–6294 (2007). [CrossRef]
  20. Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008). [CrossRef]
  21. M. M. A. Yajadda and D. I. Farrant are preparing a manuscript to be called “Laser induced electron diffusion into the substrate”.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited