OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17203–17211

λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature

Richard Maulini, Arkadiy Lyakh, Alexei Tsekoun, and C. Kumar N. Patel  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 17203-17211 (2011)
http://dx.doi.org/10.1364/OE.19.017203


View Full Text Article

Enhanced HTML    Acrobat PDF (2793 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Strain-balanced In0.6Ga0.4As/Al0.56In0.44As quantum cascade lasers emitting at a wavelength of 7.1 μm are reported. The active region is based on a three-phonon-resonance quantum design with a low voltage defect of 120 meV at injection resonance. A maximum wall-plug efficiency of 19% is demonstrated in pulsed mode at 293 K. Continuous-wave output power of 1.4 W and wall-plug efficiency of 10% are measured at the same temperature, as well as 1.2 W of average power in uncooled operation. A model for backfilling of the lower laser level which takes into account the number of subbands in the injector is presented and applied to determine the optimum value of the voltage defect to maximize wall-plug efficiency at room temperature, which is found to be ~100 meV, in good agreement with experimental results.

© 2011 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 13, 2011
Revised Manuscript: August 9, 2011
Manuscript Accepted: August 13, 2011
Published: August 17, 2011

Citation
Richard Maulini, Arkadiy Lyakh, Alexei Tsekoun, and C. Kumar N. Patel, "λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature," Opt. Express 19, 17203-17211 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-17203


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009). [CrossRef]
  2. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011). [CrossRef]
  3. Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97(8), 081115 (2010). [CrossRef]
  4. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009). [CrossRef]
  5. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, and C. K. N. Patel, “High average power uncooled mid-wave infrared quantum cascade lasers,” Electron. Lett. 47(6), 395 (2011). [CrossRef]
  6. A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010). [CrossRef]
  7. M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ>6 μm),” Opt. Eng. 49(11), 111106 (2010). [CrossRef]
  8. R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010). [CrossRef]
  9. J. S. Yu, S. Slivken, and M. Razeghi, “Injector doping level-dependent continuous-wave operation of InP-based QCLs at λ ~ 7.3 μm above room temperature,” Semicond. Sci. Technol. 25(12), 125015 (2010). [CrossRef]
  10. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18799–18802 (2010). [CrossRef]
  11. J. Faist, “Wallplug efficiency of quantum cascade lasers: critical parameters and fundamental limits,” Appl. Phys. Lett. 90(25), 253512 (2007). [CrossRef]
  12. Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009). [CrossRef]
  13. A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006). [CrossRef] [PubMed]
  14. S. S. Howard, Z. Liu, D. Wasserman, A. J. Hoffman, T. S. Ko, and C. F. Gmachl, “High-performance quantum cascade lasers: optimized design through waveguide and thermal modeling,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1054–1064 (2007). [CrossRef]
  15. S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “Injectorless quantum cascade laser operating in continuous wave above room temperature,” Semicond. Sci. Technol. 24(12), 122001 (2009). [CrossRef]
  16. K. J. Franz, P. Q. Liu, J. Raftery, M. D. Escarra, A. J. Hoffman, S. S. Howard, Y. Yao, Y. Dikmelik, X. Wang, J. Fan, J. B. Khurgin, and C. Gmachl, “Short injector quantum cascade lasers,” IEEE J. Quantum Electron. 46(5), 591–600 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited