OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17212–17219

Pockels effect based fully integrated, strained silicon electro-optic modulator

Bartos Chmielak, Michael Waldow, Christopher Matheisen, Christian Ripperda, Jens Bolten, Thorsten Wahlbrink, Michael Nagel, Florian Merget, and Heinrich Kurz  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 17212-17219 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1001 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate for the first time a fully integrated electro-optic modulator based on locally strained silicon rib-waveguides. By depositing a Si3N4 strain layer directly on top of the silicon waveguide the silicon crystal is asymmetrically distorted. Thus its inversion symmetry is broken and a linear electro-optic effect is induced. Electro-optic characterization yields a record high value χ(2) yyz = 122 pm/V for the second-order susceptibility of the strained silicon waveguide and a strict linear dependence between the applied modulation voltage Vmod and the resulting effective index change Δneff . Spatially resolved micro-Raman and terahertz (THz) difference frequency generation (DFG) experiments provide in-depth insight into the origin of the electro-optic effect by correlating the local strain distribution with the observed second-order optical activity.

© 2011 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(160.2100) Materials : Electro-optical materials
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(190.0190) Nonlinear optics : Nonlinear optics
(250.7360) Optoelectronics : Waveguide modulators
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Integrated Optics

Original Manuscript: July 15, 2011
Revised Manuscript: August 2, 2011
Manuscript Accepted: August 2, 2011
Published: August 17, 2011

Bartos Chmielak, Michael Waldow, Christopher Matheisen, Christian Ripperda, Jens Bolten, Thorsten Wahlbrink, Michael Nagel, Florian Merget, and Heinrich Kurz, "Pockels effect based fully integrated, strained silicon electro-optic modulator," Opt. Express 19, 17212-17219 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000). [CrossRef]
  2. G. L. Li and P. K. L. Yu, “Optical intensity modulators for digital and analog applications,” J. Lightwave Technol. 21(9), 2010–2030 (2003). [CrossRef]
  3. R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986). [CrossRef]
  4. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  5. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196–1197 (2007). [CrossRef]
  6. N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25μm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010). [CrossRef] [PubMed]
  7. X. Z. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. L. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express 18(3), 3059–3070 (2010). [CrossRef] [PubMed]
  8. S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18(17), 18235–18242 (2010). [CrossRef] [PubMed]
  9. A. Khilo, C. M. Sorace, and F. X. Kartner, “Broadband linearized silicon modulator,” Opt. Express 19(5), 4485–4500 (2011). [CrossRef] [PubMed]
  10. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008). [CrossRef]
  11. J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, M. Jenett, and A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett. 35(16), 2753–2755 (2010). [CrossRef] [PubMed]
  12. M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011). [CrossRef] [PubMed]
  13. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011). [CrossRef] [PubMed]
  14. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006). [CrossRef] [PubMed]
  15. J. Fage-Pedersen, L. H. Frandsen, A. V. Lavrinenko, and P. I. Borel, “A linear electro-optic effect in silicon, induced by use of strain,” in 3rd IEEE International Conference on Group IV Photonics, 37–39 (2006).
  16. N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali, and J. B. Khurgin, “Stress-induced χ(2) in silicon – comparison between theoretical and experimental values,” in 6th IEEE International Conference on Group IV Photonics, 232–234 (2009)
  17. N. K. Hon, K. K. Tsia, D. R. Solli, and B. Jalali, “Periodically-Poled Silicon,” Appl. Phys. Lett. 94(9), 091116 (2009). [CrossRef]
  18. I. DeWolf, “Micro-raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996). [CrossRef]
  19. C. Y. Peng, C. F. Huang, Y. C. Fu, Y. H. Yang, C. Y. Lai, S. T. Chang, and C. W. Liu, “Comprehensive study of the raman shifts of strained silicon and germanium,” J. Appl. Phys. 105(8), 083537 (2009). [CrossRef]
  20. M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, and H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited