OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17220–17225

Third-order nonlinear spectra and optical limiting of lead oxifluoroborate glasses

J. M. P. Almeida, L. De Boni, A. C. Hernandes, and C. R. Mendonça  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 17220-17225 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (721 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have determined two-photon absorption and nonlinear refraction spectra of the 50BO1.5 - (50-x)PbF2 - xPbO glasses (with x = 25, 35, 50 cationic %) at the range of the 470 and 1550 nm. The replacement of fluor atoms by oxygen leads to an increase in the third-order susceptibility, due to the formation of non-bridging oxygens (NBO). The nonlinear index of refraction is one order of magnitude higher than the one for fused silica, and it increases almost twice for the sample with x = 50. This sample has also shown promising features for all-optical switching as well as for optical limiting.

© 2011 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(190.0190) Nonlinear optics : Nonlinear optics
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

ToC Category:
Nonlinear Optics

Original Manuscript: July 21, 2011
Revised Manuscript: August 12, 2011
Manuscript Accepted: August 12, 2011
Published: August 17, 2011

J. M. P. Almeida, L. De Boni, A. C. Hernandes, and C. R. Mendonça, "Third-order nonlinear spectra and optical limiting of lead oxifluoroborate glasses," Opt. Express 19, 17220-17225 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2000).
  2. S. Smolorz, I. Kang, F. Wise, B. G. Aitken, and N. F. Borrelli, “Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses,” J. Non-Cryst. Solids 256-257, 310–317 (1999). [CrossRef]
  3. F. El-Diasty, M. Abdel-Baki, and F. A. Abdel-Wahab, “Tuned intensity-dependent refractive index n(2) and two-photon absorption in oxide glasses: Role of non-bridging oxygen bonds in optical nonlinearity,” Opt. Mater. 31(2), 161–166 (2008). [CrossRef]
  4. Z. D. Pan, S. H. Morgan, and B. H. Long, “Raman-scattering cross-section and nonlinear-optical response of lead borate glasses,” J. Non-Cryst. Solids 185(1-2), 127–134 (1995). [CrossRef]
  5. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11(26), 3568–3573 (2003). [CrossRef] [PubMed]
  6. V. K. Rai, L. de S. Menezes, and C. B. de Araújo, “Two-photon absorption in TeO2-PbO glasses excited at 532 and 590 nm,” Appl. Phys., A Mater. Sci. Process. 91(3), 441–443 (2008). [CrossRef]
  7. J. Siegel, J. M. Fernandez-Navarro, A. Garcia-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86(12), 121109 (2005). [CrossRef]
  8. S. Jana, B. Karmakar, and P. Kundu, “Unusual visible absorption in high PbO lead borate glass,” Mater. Sci. 25, 1127–1134 (2007).
  9. Y. G. Xi, Z. L. Xu, Z. J. Hou, L. Y. Liu, L. Xu, W. C. Wang, M. Affatigato, and S. Feller, “Second-order optical nonlinearity in bulk PbO/B2O3 glass,” Opt. Commun. 210(3-6), 367–373 (2002). [CrossRef]
  10. Z. D. Pan, D. O. Henderson, and S. H. Morgan, “A Raman investigation of lead haloborate glasses,” J. Chem. Phys. 101(3), 1767–1774 (1994). [CrossRef]
  11. B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, “Nonlinear optical properties of 2,4,5-trimethoxy-4-nitrochalcone: observation of two-photon-induced excited-state nonlinearities,” Opt. Express 17(2), 1126–1135 (2009). [CrossRef] [PubMed]
  12. P. Samineni, Z. Perret, W. S. Warren, and M. C. Fischer, “Measurements of nonlinear refractive index in scattering media,” Opt. Express 18(12), 12727–12735 (2010). [CrossRef] [PubMed]
  13. J. C. M'Peko, J. E. De Souza, S. S. Rojas, and A. C. Hernandes, “Fluoride-modified electrical properties of lead borate glasses and electrochemically induced crystallization in the glassy state,” J. Appl. Phys. 103, 044901 (2008).
  14. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n(2) measurements,” Opt. Lett. 14(17), 955–957 (1989). [CrossRef] [PubMed]
  15. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37(3), 546–550 (1998). [CrossRef] [PubMed]
  16. F. Gan, Optical and Spectroscopic Properties of Glass (Springer-Verlag, 1992).
  17. G. T. Boyd, “Applications requirements for nonlinear-optical devices and the status of organic materials,” J. Opt. Soc. Am. B 6(4), 685–692 (1989). [CrossRef]
  18. V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14(20), 1140–1142 (1989). [CrossRef] [PubMed]
  19. D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007). [CrossRef]
  20. S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300-3300 nm,” Appl. Phys. Lett. 93(13), 131102 (2008). [CrossRef]
  21. X. P. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited