OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17267–17282

Comprehensive analysis of electrically-pumped GaSb-based VCSELs

S. Arafin, A. Bachmann, K. Vizbaras, A. Hangauer, J. Gustavsson, J. Bengtsson, A. Larsson, and M.-C. Amann  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 17267-17282 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1652 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper discusses several performance-related aspects of electrically-pumped GaSb-based buried tunnel junction VCSELs with an emission wavelength of 2.6 μm based on theoretical and experimental results. These results allow a deeper insight into the internal device physics, such as radial diffusion of carriers, maximum continuous-wave operating temperature, diffraction loss, internal temperature, gain and loss parameters, internal quantum efficiency of the active region etc. These parameters can be taken into account while designing mid-infrared lasers which leads to an improved device performance. A simple thermal model of the devices based on the two-dimensional (2-D) finite element method using the material data from the literature is also presented. In addition, an application-based result utilizing these lasers for the measurement of absolute water vapor concentration by wavelength modulation spectroscopy (WMS) method are also described, hinting that devices are well-suited for the targeted sensing applications.

© 2011 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 23, 2011
Revised Manuscript: July 2, 2011
Manuscript Accepted: July 4, 2011
Published: August 18, 2011

S. Arafin, A. Bachmann, K. Vizbaras, A. Hangauer, J. Gustavsson, J. Bengtsson, A. Larsson, and M.-C. Amann, "Comprehensive analysis of electrically-pumped GaSb-based VCSELs," Opt. Express 19, 17267-17282 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005). [CrossRef]
  2. W. W. Bewley, C. L. Felix, I. Vurgaftman, E. H. Aifer, J. R. Meyer, L. Goldberg, J. R. Lindle, D. H. Chow, and E. Selvig, “Continuous-wave mid-infrared VCSELs,” IEEE Photon. Technol. Lett. 10, 660–662 (1998). [CrossRef]
  3. N. Schulz, J.-M. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers,” Laser & Photon. Rev. 2, 160–181 (2008). [CrossRef] [PubMed]
  4. F. Genty, A. Garnache, and L. Cerutti, “VCSELs emitting in the 2–3 μm wavelength range,” in Mid-infrared Semiconductor Optoelectronics, A. Krier, ed. Springer Series in Optical Sciences (Springer, 2006), Vol. 118, pp. 159–188. [CrossRef]
  5. A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournie, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 μm,” Electron. Lett. 45, 265–267 (2009). [CrossRef]
  6. R. S. Inman and J. J. F. McAndrew, “Application of tunable diode laser absorption spectroscopy to trace moisture measurements in gases,” Anal. Chem. 66, 2471–2479 (1994). [CrossRef]
  7. A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “GaSb-based electrically pumped VCSEL with buried tunnel junction operating continuous wave up to 50°C,” in Proceedings of IEEE Conference on Semiconductor Laser (Institute of Electrical and Electronic Engineers, Italy, 2008), paper TuA1, pp. 39–40. [CrossRef]
  8. S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically-pumped continuous-wave vertical-cavity surface-emitting lasers at 2.6 μm,” Appl. Phys. Lett. 95, 131120 (2009). [CrossRef]
  9. J. Chen, A. Hangauer, A. Bachmann, T. Lim, K. Kashani-Shirazi, R. Strzoda, and M.-C. Amann, “CO and CH4 sensing with single mode 2.3 μm GaSb-based VCSEL,” in Conference on Lasers and Electro-Optics (Optical Society of America, Baltimore, MD, 2009), paper CThI.
  10. A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, and M.-C. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 μm vertical-cavity surface-emitting laser,” Opt. Lett. 33, 1566–1568 (2008). [CrossRef] [PubMed]
  11. A. Hangauer, J. Chen, R. Strzoda, and M.-C. Amann, “The frequency modulation response of vertical-cavity surface-emitting lasers: experiment and theory,” IEEE J. Sel. Top. Quantum Electron. 17, 1–10 (2011).
  12. A. Bachmann, S. Arafin, and K. Kashani-Shirazi, “Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm,” N. J. Phys. 11, 125014 (2009). [CrossRef]
  13. A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-based VCSEL with buried tunnel junction for emission around 2.3 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 933–940 (2009). [CrossRef]
  14. http://www.comsol.com/
  15. S. Adachi, “Lattice thermal conductivity of group-IV and III–V semiconductor alloys,” J. Appl. Phys. 102, 063502 (2007). [CrossRef]
  16. T. Borca-Tasciuca, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Noshob, L. J. Whitman, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92, 4994–4998 (2002). [CrossRef]
  17. M. Osinski and W. Nakwaski, “Effective thermal conductivity analysis of 1.55 μm InGaAsP/InP vertical-cavity top-surface-emitting microlasers,” Electron. Lett. 29, 1015–1016 (1993). [CrossRef]
  18. M. Ortsiefer, “Langwellige Vertikalresonator-Laserdioden im Materialsystem InGaAlAs/InP,” PhD thesis (Technische Universität München, 2000).
  19. K. L. Lear, R. P. Schneider, K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett. 8, 740–742 (1996). [CrossRef]
  20. S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 9, 1–8 (2011).
  21. A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photon. Technol. Lett. 17, 1767–17697 (2005). [CrossRef]
  22. R. Michalzik, M. Grabherr, R. Jaeger, M. Miller, and K. J. Ebeling,“Progress in high-power VCSELs and arrays,” Proc. SPIE 3419, 187–195 (1998). [CrossRef]
  23. D. I. Babic, Y. Chung, N. Dagli, and J. E. Bowers, “Modal reflection of quarter-wave mirrors in vertical-cavity lasers,” IEEE J. Quantum Electron. 29, 1950–1962 (1993). [CrossRef]
  24. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  25. A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 μm,” Semicond. Sci. Technol. 22, 1140–1144 (2007). [CrossRef]
  26. A. Hangauer, J. Chen, and M.-C. Amann, “Vertical-cavity surface-emitting laser light-current characteristic at constant internal temperature,” IEEE Photon. Technol. Lett. available online,(2011). [CrossRef]
  27. G. M. Yang, M. H. MacDougal, V. Pudikov, and P. D. Dapkus, “Influence of mirror reflectivity on laser performance of very-low-threshold vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1228–1230 (1995). [CrossRef]
  28. C. Bückers, A. Thränhardt, S. W. Koch, M. Rattunde, N. Schulz, J. Wagner, J. Hader, and J. V. Moloney, “Microscopic calculation and measurement of the laser gain in a (GaIn)Sb quantum well structure,” Appl. Phys. Lett. 92, 071107 (2008). [CrossRef]
  29. E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, “A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications,” Appl. Phys. B: Lasers Opt. 85, 397–406 (2006). [CrossRef]
  30. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B: Lasers Opt. 78, 503–511 (2004). [CrossRef]
  31. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited