OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17402–17407

Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal

Chao-Te Lee, Yan Li, Hoang-Yan Lin, and Shin-Tson Wu  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 17402-17407 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (712 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the design and simulation results of an adaptive GRIN lens based on multi-electrode addressed blue phase liquid crystal. A high dielectric constant layer helps to smoothen out the horizontal electric field and reduce the operating voltage. Such a GRIN lens is insensitive to polarization while keeping parabolic phase profile as the focal length changes.

© 2011 OSA

OCIS Codes
(230.3720) Optical devices : Liquid-crystal devices
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Optical Devices

Original Manuscript: July 15, 2011
Revised Manuscript: August 3, 2011
Manuscript Accepted: August 4, 2011
Published: August 18, 2011

Chao-Te Lee, Yan Li, Hoang-Yan Lin, and Shin-Tson Wu, "Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal," Opt. Express 19, 17402-17407 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979). [CrossRef]
  2. T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997). [CrossRef] [PubMed]
  3. M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” Soc. Inf. Display Tech. Dig. 37(1), 1142–1145 (2006). [CrossRef]
  4. M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43(7), 1451–1462 (1996). [CrossRef]
  5. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996). [CrossRef]
  6. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998). [CrossRef] [PubMed]
  7. Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003). [CrossRef]
  8. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003). [CrossRef]
  9. H. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004). [CrossRef] [PubMed]
  10. Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technol. 1(1), 151–156 (2005). [CrossRef]
  11. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007). [CrossRef] [PubMed]
  12. Y. P. Huang, C. W. Chen, and T. C. Shen, “High resolution autostereoscopic 3D display with scanning multi-electrode driving liquid crystal (MeD-LC) Lens,” Soc. Inf. Display Tech. Digest 40(1), 336–339 (2009). [CrossRef]
  13. Y. Y. Kao, P. C. P. Chao, and C. W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010). [CrossRef] [PubMed]
  14. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002). [CrossRef] [PubMed]
  15. Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. (Deerfield Beach Fla.) 17(19), 2311–2315 (2005). [CrossRef]
  16. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009). [CrossRef]
  17. L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009). [CrossRef]
  18. K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Display Technol. 6(2), 49–51 (2010). [CrossRef]
  19. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010). [CrossRef]
  20. Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011). [CrossRef] [PubMed]
  21. D. Mardare and G. Rusu, “Comparison of the dielectric properties for doped and undoped TiO2 thin films,” J. Optoelectron. Adv. Mater. 6, 333–336 (2004).
  22. J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010). [CrossRef]
  23. L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011). [CrossRef]
  24. A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990). [CrossRef]
  25. Z. Ge, T. X. Wu, X. Zhu, and S. T. Wu, “Reflective liquid-crystal displays with asymmetric incident and exit angles,” J. Opt. Soc. Am. A 22(5), 966–977 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited