OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17453–17461

Generation of 578-nm yellow light over 10 mW by second harmonic generation of an 1156-nm external-cavity diode laser

Won-Kyu Lee, Chang Yong Park, Dai-Hyuk Yu, Sang Eon Park, Sang-Bum Lee, and Taeg Yong Kwon  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 17453-17461 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1123 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



578-nm yellow light with an output power of more than 10 mW was obtained using a waveguide periodically-poled-lithium-niobate crystal as a nonlinear medium for second harmonic generation, which is the highest output power at this wavelength using second harmonic generation of a solid state laser source without an enhancement ring cavity, to our knowledge. To achieve this result we made a high power 1156-nm external-cavity diode laser with the maximum output power of more than 250 mW. This system is expected to be an excellent alternative to the system using the sum-frequency generation with the advantage of simplicity and cost-effectiveness, and will be used as a clock laser of the ytterbium optical lattice clock with robust and reliable operation.

© 2011 OSA

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.7300) Lasers and laser optics : Visible lasers
(230.4320) Optical devices : Nonlinear optical devices
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 13, 2011
Revised Manuscript: August 18, 2011
Manuscript Accepted: August 18, 2011
Published: August 19, 2011

Won-Kyu Lee, Chang Yong Park, Dai-Hyuk Yu, Sang Eon Park, Sang-Bum Lee, and Taeg Yong Kwon, "Generation of 578-nm yellow light over 10 mW by second harmonic generation of an 1156-nm external-cavity diode laser," Opt. Express 19, 17453-17461 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. W. Hoyt, Z. W. Barber, C. W. Oates, T. M. Fortier, S. A. Diddams, and L. Hollberg, “Observation and absolute frequency measurements of the 1S0-3P0 optical clock transition in neutral ytterbium,” Phys. Rev. Lett. 95(8), 083003 (2005). [CrossRef] [PubMed]
  2. Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett. 96(8), 083002 (2006). [CrossRef] [PubMed]
  3. S. G. Porsev, A. Derevianko, and E. N. Fortson, “Possibility of an optical clock using the 6 1S0 → 6 3P0transition in 171,173Yb atoms held in an optical lattice,” Phys. Rev. A 69, 021403(R) (2004).
  4. Z. W. Barber, J. E. Stalnaker, N. D. Lemke, N. Poli, C. W. Oates, T. M. Fortier, S. A. Diddams, L. Hollberg, C. W. Hoyt, A. V. Taichenachev, and V. I. Yudin, “Optical lattice induced light shifts in an yb atomic clock,” Phys. Rev. Lett. 100(10), 103002 (2008). [CrossRef] [PubMed]
  5. N. Poli, Z. W. Barber, N. D. Lemke, C. W. Oates, L. S. Ma, J. E. Stalnaker, T. M. Fortier, S. A. Diddams, L. Hollberg, J. Bergquist, A. Brusch, S. Jefferts, T. Heavner, and T. Parker, “Frequency evaluation of the doubly forbidden 1S0-3P0 transition in bosonic 174Yb,” Phys. Rev. A 77(5), 050501(R) (2008). [CrossRef]
  6. N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 optical lattice clock,” Phys. Rev. Lett. 103(6), 063001 (2009). [CrossRef] [PubMed]
  7. T. Kohno, M. Yasuda, K. Hosaka, H. Inaba, Y. Nakajima, and F.-L. Hong, “One-dimensional optical lattice clock with a fermionic 171Yb isotope,” Appl. Phys. Express 2(7), 072501 (2009). [CrossRef]
  8. F.-L. Hong, H. Inaba, K. Hosaka, M. Yasuda, and A. Onae, “Doppler-free spectroscopy of molecular iodine using a frequency-stable light source at 578 nm,” Opt. Express 17(3), 1652–1659 (2009). [CrossRef] [PubMed]
  9. K. Hosaka, H. Inaba, Y. Nakajima, M. Yasuda, T. Kohno, A. Onae, and F.-L. Hong, “Evaluation of the clock laser for an Yb lattice clock using an optic fiber comb,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(3), 606–612 (2010). [CrossRef] [PubMed]
  10. A. Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008). [CrossRef]
  11. E. B. Kim, W.-K. Lee, C. Y. Park, D.-H. Yu, and S. E. Park, “Narrow linewidth 578 nm light generation using frequency-doubling with a waveguide PPLN pumped by an optical injection-locked diode laser,” Opt. Express 18(10), 10308–10314 (2010). [CrossRef] [PubMed]
  12. A. Brusch, R. Le Targat, X. Baillard, M. Fouché, and P. Lemonde, “Hyperpolarizability effects in a Sr optical lattice clock,” Phys. Rev. Lett. 96(10), 103003 (2006). [CrossRef] [PubMed]
  13. L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19(21), 1777–1779 (1994). [CrossRef] [PubMed]
  14. A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69(3), 1236–1239 (1998). [CrossRef]
  15. C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477–4479 (2001). [CrossRef]
  16. W.-K. Lee, C. Y. Park, J. Mun, and D.-H. Yu, “Linewidth reduction of a distributed-feedback diode laser using an all-fiber interferometer with short path imbalance,” Rev. Sci. Instrum. 82(7), 073105 (2011). [CrossRef] [PubMed]
  17. L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterization of narrow linewidth diode lasers,” Opt. Commun. 201(4-6), 391–397 (2002). [CrossRef]
  18. H. Jiang, F. Kéfélian, P. Lemonde, A. Clairon, and G. Santarelli, “An agile laser with ultra-low frequency noise and high sweep linearity,” Opt. Express 18(4), 3284–3297 (2010). [CrossRef] [PubMed]
  19. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009). [CrossRef] [PubMed]
  20. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983). [CrossRef]
  21. J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. IM-20(2), 105–120 (1971). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited