OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17500–17505

Efficiency-enhanced optical parametric down conversion for mid-infrared generation on a tandem periodically poled MgO-doped stoichiometric lithium tantalate chip

Y. H. Liu, Z. D. Xie, W. Ling, Y. Yuan, X. J. Lv, J. Lu, X. P. Hu, G. Zhao, and S. N. Zhu  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 17500-17505 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (818 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an efficiency-enhanced mid-infrared generation via optical parametric down conversion. A tandem periodically-poled MgO-doped stoichiometric lithium tantalate crystal is used to realize on-chip generation and amplification of mid-infrared radiation inside an optical parametric oscillator cavity. We achieved 21.2% conversion efficiency (24% slope efficiency), which is among the highest efficiencies for the pump-to-mid-infrared conversion, with 1064 nm Nd class laser pump. The maximum average output power at 3.87 μ m reached 635 mW with a 3.0 W pump.

© 2011 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

Original Manuscript: June 23, 2011
Revised Manuscript: August 6, 2011
Manuscript Accepted: August 7, 2011
Published: August 22, 2011

Y. H. Liu, Z. D. Xie, W. Ling, Y. Yuan, X. J. Lv, J. Lu, X. P. Hu, G. Zhao, and S. N. Zhu, "Efficiency-enhanced optical parametric down conversion for mid-infrared generation on a tandem periodically poled MgO-doped stoichiometric lithium tantalate chip," Opt. Express 19, 17500-17505 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Guoguang and H. Yunian, “Laser-based IRCM system defenses for military and commercial aircraft,” Laser Infrared 36, 1–6 (2006).
  2. Y. Peng, W. Wang, X. Wei, and D. Li, “High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN,” Opt. Lett. 34(19), 2897–2899 (2009). [CrossRef] [PubMed]
  3. M. E. Dearborn, K. Koch, G. T. Moore, and J. C. Diels, “Greater than 100% photon-conversion efficiency from an optical parametric oscillator with intracavity difference-frequency mixing,” Opt. Lett. 23(10), 759–761 (1998). [CrossRef] [PubMed]
  4. J. M. Fraser and C. Ventalon, “Parametric cascade downconverter for intense ultrafast mid-infrared generation beyond the Manley-Rowe limit,” Appl. Opt. 45(17), 4109–4113 (2006). [CrossRef] [PubMed]
  5. K. Koch, G. T. Moore, and E. C. Cheungy, “Optical parametric oscillation with intracavity difference-frequency mixing,” J. Opt. Soc. Am. B 12(11), 2268–2273 (1995). [CrossRef]
  6. G. T. Moore and K. Koch, “Efficient High-Gain Two-Crystal Optical Parametric Oscillator,” IEEE J. Quantum Electron. 31(5), 761–768 (1995). [CrossRef]
  7. A. Berrou, J.-M. Melkonian, M. Raybaut, A. Godard, E. Rosencher, and M. Lefebvre, “Specific architectures for optical parametric oscillators,” C. R. Phys. 8(10), 1162–1173 (2007). [CrossRef]
  8. K. J. McEwan and J. A. C. Terry, “A tandem periodically-poled lithium niobate (PPLN) optical parametric oscillator (OPO),” Opt. Commun. 182(4-6), 423–432 (2000). [CrossRef]
  9. J. M. Fukumoto, H. Komine, W. H. Long, Jr., and E. A. Stappaerts, “Periodically Poled LiNbO3 Optical Parametric Oscillator with Intracavity Difference Frequency Mixing,” in: W. R. Bosenberg, M. M. Fejer (Eds.), Advanced Solid State Lasers, OSA Trends in Optics and Photonics Series, 19, 245–248 (1998).
  10. H. C. Guo, Y. Q. Qin, Z. X. Shen, and S. H. Tang, “Mid-infrared radiation in an aperiodically poled LiNbO3 superlattice induced by cascaded parametric processes,” J. Phys. Condens. Matter 16(47), 8465–8473 (2004). [CrossRef]
  11. G. Porat, O. Gayer, and A. Arie, “Simultaneous parametric oscillation and signal-to-idler conversion for efficient downconversion,” Opt. Lett. 35(9), 1401–1403 (2010). [CrossRef] [PubMed]
  12. N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, J. Sakuma, Y. Otani, and A. Shiratori, “Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation,” Appl. Phys. Lett. 84(10), 1662–1664 (2004). [CrossRef]
  13. W. L. Weng, Y. W. Liu, and X. Q. Zhang, “Temperature-Dependent Sellmeier Equation for 1.0 mol% Mg-Doped Stoichiometric Lithium Tantalate,” Chin. Phys. Lett. 25(12), 4303–4306 (2008). [CrossRef]
  14. S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. G. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995). [CrossRef]
  15. X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85(2), 188–190 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited