OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17506–17519

Optical Cluster Eye fabricated on wafer-level

Julia Meyer, Andreas Brückner, Robert Leitel, Peter Dannberg, Andreas Bräuer, and Andreas Tünnermann  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 17506-17519 (2011)
http://dx.doi.org/10.1364/OE.19.017506


View Full Text Article

Enhanced HTML    Acrobat PDF (1666 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wafer-level optics is considered as a cost-effective approach to miniaturized cameras, because fabrication and assembly are carried out for thousands of lenses in parallel. However, in most cases the micro-optical fabrication process is not mature enough to reach the required accuracy of the optical elements, which may have complex profiles and sags in the mm-scale. Contrary, the creation of microlens arrays is well controllable so that we propose a multi aperture system called ”Optical Cluster Eye” which is based on conventional micro-optical fabrication techniques. The proposed multi aperture camera consists of many optical channels each transmitting a segment of the whole field of view. The design of the system provides the stitching of the partial images, so that a seamless image is formed and a commercially available image sensor can be used. The system can be fabricated on wafer-level with high yield due to small aperture diameters and low sags. The realized optics has a lateral size of 2.2 × 2.9 mm2, a total track length of 1.86 mm, and captures images at VGA video resolution.

© 2011 OSA

OCIS Codes
(040.1240) Detectors : Arrays
(080.2730) Geometric optics : Matrix methods in paraxial optics
(110.0110) Imaging systems : Imaging systems
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3990) Optical devices : Micro-optical devices
(350.3950) Other areas of optics : Micro-optics
(150.6044) Machine vision : Smart cameras

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: June 20, 2011
Revised Manuscript: August 4, 2011
Manuscript Accepted: August 12, 2011
Published: August 22, 2011

Citation
Julia Meyer, Andreas Brückner, Robert Leitel, Peter Dannberg, Andreas Bräuer, and Andreas Tünnermann, "Optical Cluster Eye fabricated on wafer-level," Opt. Express 19, 17506-17519 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-17506


Sort:  Journal  |  Reset  

References

  1. R. H. Anderson, “Close-up imaging of documents and displays with lens arrays,” Appl. Opt.18, 477–484 (1997). [CrossRef]
  2. M. Kawazu and Y. Ogura, “Application of gradient-index fiber arrays to copying machines,” Appl. Opt.19, 1105–1112 (1980). [CrossRef] [PubMed]
  3. N. F. Borrelli, R. H. Bellman, J. A. Durbin, and W. Lama, “Imaging and radiometric properties of microlens arrays,” Appl. Opt.30, 3633–3642 (1991). [CrossRef] [PubMed]
  4. D. Gabor, UK Patent 541753 (1940).
  5. M. C. Hutley, R. Hunt, R. F. Stevens, and P. Savander, “The moiré magnifier,” Pure Appl. Opt.3, 133–142 (1994). [CrossRef]
  6. C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the gabor superlens,” J. Opt. A: Pure Appl. Opt.1, 94–102 (1998). [CrossRef]
  7. K. Stollberg, A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “The gabor superlens as an alternative waferlevel camera approach inspired by superposition compound eyes of nocturnal insects,” Opt. Express17, 15747–15759 (2009). [CrossRef] [PubMed]
  8. A. Garza-Rivera and F. J. Renero-Carrillo, “Design of an ultra-thin objective lens based on superposition compound eye,” Proc. SPIE7930, 79300D (2011). [CrossRef]
  9. R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng.67–68, 461–472 (2003). [CrossRef]
  10. J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, A. Tünnermann, R. Völkel, M. Eisner, and T. Scharf, “Microoptical telescope compound eye,” Opt. Express13, 889–903 (2005). [CrossRef] [PubMed]
  11. G. Druart, N. Guérineau, R. Haïdar, S. Thétas, J. Taboury, S. Rommeluère, J. Primot, and M. Fendler, “Demonstration of an infrared microcamera inspired by xenos peckii vision,” Appl. Opt.48, 3368–3374 (2009). [CrossRef] [PubMed]
  12. A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express18, 24379–24394 (2010). [CrossRef] [PubMed]
  13. W. J. Smith, Modern Optical Engineering: The Design of Optical Systems, 2nd ed. (McGraw-Hill, 1990).
  14. J. Duparré, D. Radtke, and P. Dannberg, “Implementation of field lens arrays in beam-deflecting microlens array telescopes,” Appl. Opt.43, 4854–4861 (2004). [CrossRef] [PubMed]
  15. N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A: Pure Appl. Opt.4, 1–9 (2002). [CrossRef]
  16. J. Duparré, F. Wippermann, P. Dannberg, and A. Reimann, “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence,” Opt. Express13, 10539–10551 (2005). [CrossRef] [PubMed]
  17. P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and OlE-integration,” Proc. SPIE4179, 137–145 (2000). [CrossRef]
  18. Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt.27, 1281–1284 (1988). [CrossRef] [PubMed]
  19. S. Haselbeck, H. Schreiber, J. Schwider, and N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer,” Opt. Eng.32, 1322–1324 (1993). [CrossRef]
  20. OmniVision: OVM7690; 640 × 480 CameraCube™ device; product brief, Version 1.0 (September2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited