OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17520–17527

High-precision molecular interrogation by direct referencing of a quantum-cascade-laser to a near-infrared frequency comb

D. Gatti, A. Gambetta, A. Castrillo, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 17520-17527 (2011)
http://dx.doi.org/10.1364/OE.19.017520


View Full Text Article

Enhanced HTML    Acrobat PDF (1316 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work presents a very simple yet effective way to obtain direct referencing of a quantum-cascade-laser at 4.3 μm to a near-IR frequency-comb. Precise tuning of the comb repetition-rate allows the quantum-cascade-laser to be scanned across absorption lines of a CO2 gaseous sample and line profiles to be acquired with extreme reproducibility and accuracy. By averaging over 50 acquisitions, line-centre frequencies are retrieved with an uncertainty of 30 kHz in a linear interaction regime. The extension of this methodology to other lines and molecules, by the use of widely tunable extended-cavity quantum-cascade-lasers, paves the way to a wide availability of high-quality and traceable spectroscopic data in the most crucial region for molecular detection and interrogation.

© 2011 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 28, 2011
Revised Manuscript: July 21, 2011
Manuscript Accepted: August 2, 2011
Published: August 22, 2011

Citation
D. Gatti, A. Gambetta, A. Castrillo, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, "High-precision molecular interrogation by direct referencing of a quantum-cascade-laser to a near-infrared frequency comb," Opt. Express 19, 17520-17527 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-17520


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  2. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288(5466), 635–640 (2000). [CrossRef] [PubMed]
  3. Th. Udem, R. Holzwarth, and T. W. Hansch, “Femtosecond optical frequency combs,” Eur. Phys. J. Spec. Top.172(1), 69–79 (2009). [CrossRef]
  4. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994). [CrossRef] [PubMed]
  5. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science295(5553), 301–305 (2002). [CrossRef] [PubMed]
  6. A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010). [CrossRef]
  7. A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004). [CrossRef]
  8. P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale, “Absolute frequency measurement of molecular transitions by a direct link to a comb generated around 3-microm,” Opt. Express16(11), 8242–8249 (2008). [CrossRef] [PubMed]
  9. D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, and M. Prevedelli, “Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer,” Opt. Lett.30(9), 997–999 (2005). [CrossRef] [PubMed]
  10. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett.104(8), 083904 (2010). [CrossRef] [PubMed]
  11. S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett.32(8), 988–990 (2007). [CrossRef] [PubMed]
  12. M. Zimmermann, C. Gohle, R. Holzwarth, Th. Udem, and T. W. Hansch, “Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation,” Opt. Lett.29(3), 310–312 (2004). [CrossRef] [PubMed]
  13. S. M. Foreman, A. Marian, J. Ye, E. A. Petrukhin, M. A. Gubin, O. D. Mücke, F. N. C. Wong, E. P. Ippen, and F. X. Kärtner, “Demonstration of a HeNe/CH4-based optical molecular clock,” Opt. Lett.30(5), 570–572 (2005). [CrossRef] [PubMed]
  14. A. Amy-Klein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez, A. Shelkovnikov, and C. Chardonnet, “Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation,” Opt. Lett.30(24), 3320–3322 (2005). [CrossRef] [PubMed]
  15. J. Jiang, A. Onae, H. Matsumoto, and F. L. Hong, “Frequency measurement of acetylene-stabilized lasers using a femtosecond optical comb without carrier-envelope offset frequency control,” Opt. Express13(6), 1958–1965 (2005). [CrossRef] [PubMed]
  16. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 microm from a compact fiber source,” Opt. Lett.32(9), 1138–1140 (2007). [CrossRef] [PubMed]
  17. A. Gambetta, R. Ramponi, and M. Marangoni, “Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator,” Opt. Lett.33(22), 2671–2673 (2008). [CrossRef] [PubMed]
  18. T. A. Johnson and S. A. Diddams, “Mid-IR Frequency Comb Upconversion Spectroscopy”, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CPDB11.
  19. F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, “Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er:fiber laser,” Opt. Lett.32(24), 3504–3506 (2007). [CrossRef] [PubMed]
  20. F. Tauser, F. Adler, and A. Leitenstorfer, “Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source,” Opt. Lett.29(5), 516–518 (2004). [CrossRef] [PubMed]
  21. S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics4(9), 636–640 (2010). [CrossRef]
  22. P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, “Measuring optical frequencies in the 0–40 THz range with non-synchronized electro–optic sampling,” Nat. Photonics1(10), 577–580 (2007). [CrossRef]
  23. G. Casa, D. A. Parretta, A. Castrillo, R. Wehr, and L. Gianfrani, “Highly accurate determinations of CO2 line strengths using intensity-stabilized diode laser absorption spectrometry,” J. Chem. Phys.127(8), 084311 (2007). [CrossRef] [PubMed]
  24. A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu, and J. Faist, “Doppler-free saturated-absorption spectroscopy of CO2 at 4.3 microm by means of a distributed feedback quantum cascade laser,” Opt. Lett.31(20), 3040–3042 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited