OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17539–17945

Polarization characteristics of the metallic structure with elliptically helical metamaterials

Lin Wu, ZhenYu Yang, Ming Zhao, Yang Yu, ShengXi Li, QianPeng Zhang, and XiuHua Yuan  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 17539-17945 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1613 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Abstract: In the last few years, there has been growing interest in the research of the polarizing optics consisting of sub-wavelength metamaterials due to the advantages of broad wavelength ranges, high temperature durability, and compact structures. So far, the metallic structure with the sub-wavelength metamaterials has been proved to achieve the linearly and the circularly polarized light. Therefore, there should be one question raised easily: Is it possible for the metallic structure with sub-wavelength metamaterials to generate the elliptically polarized light? To answer this question, we proposed a metallic structure with elliptically helical nanowires, and analyzed the polarization states of the transmitted light using FDTD method. It is confirmed that this metallic structure does have a giant elliptical dichroism. Furthermore, we also compared the distinct optical performances of elliptical single-, double-, three-, and four-helixes, and made a qualitative explanation for them.

© 2011 OSA

OCIS Codes
(260.5430) Physical optics : Polarization
(160.1585) Materials : Chiral media
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: June 30, 2011
Revised Manuscript: July 25, 2011
Manuscript Accepted: July 25, 2011
Published: August 22, 2011

Lin Wu, ZhenYu Yang, Ming Zhao, Yang Yu, ShengXi Li, QianPeng Zhang, and XiuHua Yuan, "Polarization characteristics of the metallic structure with elliptically helical metamaterials," Opt. Express 19, 17539-17945 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Hecht, Optics (Addison-Wesley, San Francisco, 2002, 4th edition). [PubMed]
  2. J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007). [CrossRef]
  3. J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006). [CrossRef]
  4. J. J. Wang, W. Zhang, X. G. Deng, J. D. Deng, F. Liu, P. Sciortino, and L. Chen, “High-performance nanowire-grid polarizers,” Opt. Lett. 30(2), 195–197 (2005). [CrossRef] [PubMed]
  5. Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “‘Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20(9), 697–699 (2008). [CrossRef]
  6. Z. Y. Yang and Y. F. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Opt. Express 15(15), 9510–9519 (2007). [CrossRef] [PubMed]
  7. C. Lei, W. Jian Jim, F. Walters, D. Xuegong, M. Buonanno, S. Tai, and L. Xiaoming, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007). [CrossRef]
  8. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  9. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010). [CrossRef] [PubMed]
  10. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010). [CrossRef]
  11. Z. Y. Yang, M. Zhao, P. X. Lu, and Y. F. Lu, “Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures,” Opt. Lett. 35(15), 2588–2590 (2010). [CrossRef] [PubMed]
  12. Z. Y. Yang, M. Zhao, and P. X. Lu, “How to improve the signal-to-noise ratio for circular polarizers consisting of helical metamaterials?” Opt. Express 19(5), 4255–4260 (2011). [CrossRef] [PubMed]
  13. J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39(10), 1549–1554 (2000). [CrossRef] [PubMed]
  14. A. V. Taichenachev, A. M. Tumaikin, V. I. Yudin, and G. Nienhuis, “Steady state of atoms in a resonant field with elliptical polarization,” Phys. Rev. A 69(3), 033410 (2004). [CrossRef]
  15. A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Nonlinear polarization rotation of elliptical light in cubic crystals, with application to cross-polarized wave generation,” J. Opt. Soc. Am. B 22(12), 2635–2641 (2005). [CrossRef]
  16. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114(2), 185–200 (1994). [CrossRef]
  17. P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994). [CrossRef]
  18. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  19. I. D. Rukhlenko, C. Dissanayake, and M. Premaratne, “Visualization of electromagnetic-wave polarization evolution using the Poincaré sphere,” Opt. Lett. 35(13), 2221–2223 (2010). [CrossRef] [PubMed]
  20. J. D. Kraus and R. J. Marhefka, Antennas: for All Applications (McGraw-Hill, New York, 2003, 3rd edition).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited